References

  1. X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, L. Ren, The deep challenge of nitrate pollution in river water of China, Sci. Total Environ., 770 (2021) 144674, doi: 10.1016/j.scitotenv.2020.144674.
  2. X. Ran, M. Zhou, T. Wang, W. Wang, S. Kumari, Y. Wang, Multidisciplinary characterization of nitrogen-removal granular sludge: a review of advances and technologies, Water Res., 214 (2022) 118214, doi: 10.1016/j.watres.2022.118214.
  3. M. Zhang, S. Wang, Y. Bi, F. Meng, D. Wang, C. Qiu, C. Wang, J. Yu, Enhanced nitrogen removal of single stage partial nitritation anammox system by glycine betaine addition at low temperature: performance and mechanism, J. Water Process Eng., 49 (2022) 102959, doi: 10.1016/j.jwpe.2022.102959.
  4. Y. Huang, W. Huang, X. Gu, Y. Li, Research progress of NOB inhibition strategy of partial nitrosation-anammox process in municipal wastewater, Chin. J. Environ. Eng., 17 (2023) 1075–1083.
  5. M. Zhang, X. Wang, D. Zhang, G. Zhao, B. Zhou, D. Wang, Z. Wu, C. Yan, J. Liang, L. Zhou, Food waste hydrolysate as a carbon source to improve nitrogen removal performance of high ammonium and high salt wastewater in a sequencing batch reactor, Bioresour. Technol., 349 (2022) 126855, doi: 10.1016/j.biortech.2022.126855.
  6. C.J. Sedlacek, S. Nielsen, K.D. Greis, W.D. Haffey, N.P. Revsbech, T. Ticak, H.J. Laanbroek, A. Bollmann, Effects of bacterial community members on the proteome of the ammoniaoxidizing Bacterium nitrosomonas sp strain Is79, Appl. Environ. Microbiol., 82 (2016) 4776–4788.
  7. M. Cai, S.-K. Ng, C.K. Lim, H. Lu, Y. Jia, P.K.H. Lee, Physiological and metagenomic characterizations of the synergistic relationships between ammonia- and nitrite-oxidizing bacteria in freshwater nitrification, Front. Microbiol., 9 (2018) 00280, doi: 10.3389/fmicb.2018.00280.
  8. M. Ali, M. Oshiki, T. Awata, K. Isobe, Z. Kimura, H. Yoshikawa, D. Hira, T. Kindaichi, H. Satoh, T. Fujii, S. Okabe, Physiological characterization of anaerobic ammonium oxidizing bacterium “CandidatusJettenia caeni”, Environ. Microbiol., 17 (2015) 2172–2189.
  9. R. Manser, W. Gujer, H. Siegrist, Consequences of mass transfer effects on the kinetics of nitrifiers, Water Res., 39 (2005) 4633–4642.
  10. S. Lackner, K. Thoma, E.M. Gilbert, W. Gander, D. Schreff, H. Horn, Start-up of a full-scale deammonification SBR-treating effluent from digested sludge dewatering, Water Sci. Technol., 71 (2014) 553–559.
  11. W. Zhu, M. Van Tendeloo, J. De Paepe, S.E. Vlaeminck, Comparison of typical nitrite-oxidizing bacteria suppression strategies and the effect on nitrous oxide emissions in a biofilm reactor, Bioresour. Technol., 387 (2023) 129607–129607, doi: 10.1016/j.biortech.2023.129607.
  12. L. Yao, Y. Liang, M. Chen, L. Chen, K. He, G. Yu, Effects of aeration rates on the performance and microbial characteristics of partial nitrification under high dissolved oxygen condition, Acta Sci. Circum., 41 (2021) 3258–3267.
  13. Y. Chen, Z. Zhao, H. Liu, Y. Ma, F. An, J. Huang, Z. Shao, Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration, Chemosphere, 245 (2020) 125650, doi: 10.1016/j.chemosphere.2019.125650.
  14. J. Wang, Y. Zhang, Q. Liu, H. Xue, Y. Wang, Characteristics of MBBR-nitrite biofilm under continuous/intermittent aeration, Chin. Environ. Sci., 40 (2020) 261–268.
  15. K. Zhang, J. Li, Z. Zheng, J. Zhang, M. Sun, S. Huang, Analyzing the sludge characteristics and microbial communities of biofilm and activated sludge in the partial nitrification/anammox process, J. Water Process Eng., 46 (2022) 102618, doi: 10.1016/j.jwpe.2022.102618.
  16. G. Liu, J. Wang, Long-term low DO enriches and shifts nitrifier community in activated sludge, Environ. Sci. Technol., 47 (2013) 5109–5117.
  17. Z. Lei, L. Wang, J. Wang, S. Yang, Z. Hou, X. Wang, R. Chen, Partial-nitritation of low-strength anaerobic effluent: a moderate-high dissolved oxygen concentration facilitates ammonia-oxidizing bacteria disinhibition and nitrite-oxidizing bacteria suppression, Sci. Total Environ., 770 (2021) 145337, doi: 10.1016/j.scitotenv.2021.145337.
  18. W. Bian, J. Li, A. Hou, M. Wang, S. Zhang, Rapidly startup of partial nitrification in sequencing batch reactor and microbiological analysis, Desal. Water Treat., 57 (2016) 21062–21070.
  19. H. Cui, L. Zhang, Y. Peng, Q. Zhang, X. Li, Achieving stable nitritation for mainstream anammox by combining nitrite exposure inhibition with high DO reactivation, J. Water Process Eng., 46 (2022) 102589, doi: 10.1016/j.jwpe.2022.102589.
  20. B. Cui, Q. Yang, X. Liu, S. Huang, Y. Yang, Z. Liu, The effect of dissolved oxygen concentration on long-term stability of partial nitrification process, J. Environ. Sci. Chin., 90 (2020) 343–351.
  21. C. Yeshi, K. Hong, M.C.M. van Loosdrecht, G.T. Daigger, P. Yi, Y.L. Wah, C.S. Chye, Y.A. Ghani, Mainstream partial nitritation and anammox in a 200,000 m3/day activated sludge process in Singapore: scale-down by using laboratory fed-batch reactor, Water Sci. Technol., 74 (2016) 48–56.
  22. J. Li, L. Zhang, Y. Peng, S. Yang, X. Wang, X. Li, Q. Zhang, NOB suppression in partial nitritation-anammox (PNA) process by discharging aged flocs: performance and microbial community dynamics, Chemosphere, 227 (2019) 26–33.
  23. X. Gu, W. Huang, Y. Li, Y. Huang, M. Zhang, Regulation of partial nitrification by influent N loading and sludge discharge in mainstream sewage treatment, J. Water Process Eng., 52 (2023) 103536, doi: 10.1016/j.jwpe.2023.103536.
  24. K. Trojanowicz, J. Trela, E. Plaza, Possible mechanism of efficient mainstream partial nitritation/anammox (PN/A) in hybrid bioreactors (IFAS), Environ. Technol., 42 (2021) 1023–1037.
  25. C.T. Kinh, J. Ahn, T. Suenaga, N. Sittivorakulpong, P. Noophan, T. Hori, S. Riya, M. Hosomi, A. Terada, Free nitrous acid and pH determine the predominant ammonia-oxidizing bacteria and amount of N2O in a partial nitrifying reactor, Appl. Microbiol. Biotechnol., 101 (2017) 1673–1683.
  26. H. Duan, L. Ye, X. Lu, Z. Yuan, Overcoming nitrite-oxidizing bacteria adaptation through alternating sludge treatment with free nitrous acid and free ammonia, Environ. Sci. Technol., 53 (2019) 1937–1946.
  27. D.J. Kim, D.W. Seo, S.H. Lee, O. Shipin, Free nitrous acid selectively inhibits and eliminates nitrite oxidizers from nitrifying sequencing batch reactor, Bioprocess. Biosyst. Eng., 35 (2012) 441–448.
  28. A. Soler-Jofra, L. Schmidtchen, L. Olmo, M.C.M. van Loosdrecht, J. Pérez, Short and long term continuous hydroxylamine feeding in a granular sludge partial nitritation reactor, Water Res., 209 (2022) 117945, doi: 10.1016/j.watres.2021.117945.
  29. W. Feng, J. Qiao, J. Li, F. Zhang, Q. Zhang, X. Li, Y. Peng, Anammox granule destruction and reconstruction in a partial nitrification/anammox system under hydroxylamine stress, J Environ. Manage., 345 (2023) 118688, doi: 10.1016/j.jenvman.2023.118688.
  30. Y. Miao, Y. Peng, L. Zhang, B. Li, X. Li, L. Wu, S. Wang, Partial nitrification-anammox (PNA) treating sewage with intermittent aeration mode: effect of influent C/N ratios, Chem. Eng. J., 334 (2018) 664–672.
  31. J. Li, L. Zhang, J. Liu, J. Lin, Y. Peng, Hydroxylamine addition and real-time aeration control in sewage nitritation system for reduced start-up period and improved process stability, Bioresour. Technol., 294 (2019) 122183, doi: 10.1016/j.biortech.2019.122183.
  32. Q. Sui, Y. Wang, H. Wang, W. Yue, Y. Chen, D. Yu, M. Chen, Y. Wei, Roles of hydroxylamine and hydrazine in the in-situ recovery of one-stage partial nitritation-anammox process: characteristics and mechanisms, Sci. Total Environ., 707 (2020) 135648, doi: 10.1016/j.scitotenv.2019.135648.
  33. Y. Wang, Y. Wang, Y. Wei, M. Chen, In-situ restoring nitrogen removal for the combined partial nitritation-anammox process deteriorated by nitrate build-up, Biochem. Eng. J., 98 (2015) 127–136.
  34. Y. Wang, R. Bailis, The revolution from the kitchen: social processes of the removal of traditional cookstoves in Himachal Pradesh, India, Energy Sustainable Dev., 27 (2015) 127–136.
  35. J. Li, Q. Zhang, X. Li, Y. Peng, Rapid start-up and stable maintenance of domestic wastewater nitritation through shortterm hydroxylamine addition, Bioresour. Technol., 278 (2019) 468–472.
  36. J. Zhao, J. Zhao, S. Xie, S. Lei, The role of hydroxylamine in promoting conversion from complete nitrification to partial nitrification: NO toxicity inhibition and its characteristics, Bioresour. Technol., 319 (2021) 124230, doi: 10.1016/j.biortech.2020.124230.
  37. E.N.P. Courtens, H. De Clippeleir, S.E. Vlaeminck, R. Jordaens, H. Park, K. Chandran, N. Boon, Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite, J. Biotechnol., 193 (2015) 120–122.
  38. S. Ganesan, V.M. Vadivelu, Effect of external hydrazine addition on anammox reactor start-up time, Chemosphere, 223 (2019) 668–674.
  39. P. Xiao, P. Lu, D. Zhang, X. Han, Q. Yang, Effect of trace hydrazine addition on the functional bacterial community of a sequencing batch reactor performing completely autotrophic nitrogen removal over nitrite, Bioresour. Technol., 175 (2015) 216–223.
  40. T. Xiang, H. Liang, P. Wang, D. Gao, Insights into two stable mainstream deammonification process and different microbial community dynamics at ambient temperature, Bioresour. Technol., 331 (2021) 125058, doi: 10.1016/j.biortech.2021.125058.
  41. T. Xiang, D. Gao, Comparing two hydrazine addition strategies to stabilize mainstream deammonification: performance and microbial community analysis, Bioresour. Technol., 289 (2019) 121710, doi: 10.1016/j.biortech.2019.121710.
  42. J. Ma, H. Yao, H. Yu, L. Zuo, H. Li, J. Ma, Y. Xu, J. Pei, X. Li, Hydrazine addition enhances the nitrogen removal capacity in an anaerobic ammonium oxidation system through accelerating ammonium and nitrite degradation and reducing nitrate production, Chem. Eng. J., 335 (2018) 401–408.
  43. B. Ma, S. Wang, S. Cao, Y. Miao, F. Jia, R. Du, Y. Peng, Biological nitrogen removal from sewage via anammox: recent advances, Bioresour. Technol., 200 (2016) 981–990.
  44. D. Seuntjens, M. Van Tendeloo, I. Chatzigiannidou, J.M. Carvajal-Arroyo, S. Vandendriessche, S.E. Vlaeminck, N. Boon, Synergistic exposure of return-sludge to anaerobic starvation, sulfide, and free ammonia to suppress nitriteoxidizing bacteria, Environ. Sci. Technol., 52 (2018) 8725–8732.
  45. V. Kouba, E. Proksova, H. Wiesinger, D. Vejmelkova, J. Bartacek, Good servant, bad master: sulfide influence on partial nitritation of sewage, Water Sci. Technol., 76 (2017) 3258–3268.
  46. J. Wang, Y. Liu, F. Meng, W. Li, The short- and long-term effects of formic acid on rapid nitritation start-up, Environ. Int., 135 (2020) 105350, doi: 10.1016/j.envint.2019.105350.
  47. R.L. Moore, Biological effects of magnetic fields: studies with microorganisms, Can. J. Microbiol., 25 (1979) 1145–1151.
  48. Q. Tao, S. Zhou, Effect of static magnetic field on electricity production and wastewater treatment in microbial fuel cells, Appl. Microbiol. Biotechnol., 98 (2014) 9879–9887.
  49. Z. Wang, X. Liu, S. Ni, J. Zhang, X. Zhang, H.A. Ahmad, B. Gao, Weak magnetic field: a powerful strategy to enhance partial nitrification, Water Res., 120 (2017) 190–198.
  50. Z. Wang, P. Liu, S. Ni, T. Lee, S. Ahmad, Low-frequency infrared electromagnetic wave promotes partial nitrification by affecting the community signal system, Chem. Eng. J., 425 (2021) 131636, doi: 10.1016/j.cej.2021.131636.
  51. W. Jia, J. Zhang, Y. Lu, G. Li, W. Yang, Q. Wang, Response of nitrite accumulation and microbial characteristics to lowintensity static magnetic field during partial nitrification, Bioresour. Technol., 259 (2018) 214–220.
  52. S. Tian, S. Huang, Y. Zhu, G. Zhang, J. Lian, Z. Liu, L. Zhang, X. Qin, Effect of low-intensity ultrasound on partial nitrification: performance, sludge characteristics, and properties of extracellular polymeric substances, Ultrason. Sonochem., 73 (2021) 105527, doi: 10.1016/j.ultsonch.2021.105527.
  53. M. Zheng, S. Wu, Q. Dong, X. Huang, Z. Yuan, Y. Liu, Achieving mainstream nitrogen removal via the nitrite pathway from real municipal wastewater using intermittent ultrasonic treatment, Ultrason. Sonochem., 51 (2019) 406–411.
  54. S. Huang, Y. Zhu, J. Lian, Z. Liu, L. Zhang, S. Tian, Enhancement in the partial nitrification of wastewater sludge via lowintensity ultrasound: effects on rapid start-up and temperature resilience, Bioresour. Technol., 294 (2019) 122196, doi: 10.1016/j.biortech.2019.122196.
  55. C. Picioreanu, J. Perez, M.C.M. van Loosdrecht, Impact of cell cluster size on apparent half-saturation coefficients for oxygen in nitrifying sludge and biofilms, Water Res., 106 (2016) 371–382.
  56. J. Zhao, T. Liu, J. Meng, Z. Hu, X. Lu, S. Hu, Z. Yuan, M. Zheng, Ammonium concentration determines oxygen penetration depth to impact the suppression of nitrite-oxidizing bacteria inside partial nitritation and anammox biofilms, Chem. Eng. J., 455 (2023) 140738, doi: 10.1016/j.cej.2022.140738.
  57. Z. Yang, K. Fu, M. Liao, F. Qiu, X. Cao, Discussion on inhibition strategies of two nitrite-oxidizing bacteria in nitritation, Chin. J. Environ. Eng., 13 (2019) 222–231.
  58. B. Zhang, C. Sun, H. Lin, W. Liu, W. Qin, T. Chen, T. Yang, X. Wen, Differences in distributions, assembly mechanisms, and putative interactions of AOB and NOB at a large spatial scale, Front. Environ. Sci. Eng., 17 (2023) 122, doi: 10.1007/s11783-023-1722-0.
  59. C.M. Waters, B.L. Bassler, Quorum sensing: cell-to-cell communication in bacteria, Annu. Rev. Cell Dev. Biol., 21 (2005) 319–346.
  60. C. Jiang, X. Wang, H. Wang, S. Xu, W. Zhang, Q. Meng, X. Zhuang, Achieving partial nitritation by treating sludge with free nitrous acid: the potential role of quorum sensing, Front. Microbiol., 13 (2022) 897566, doi: 10.3389/fmicb.2022.897566.
  61. Z. Feng, Y. Sun, T. Li, F. Meng, G. Wu, Operational pattern affects nitritation, microbial community and quorum sensing in nitrifying wastewater treatment systems, Sci. Total Environ., 677 (2019) 456–465.
  62. T. Ma, C. Cheng, L. Xing, Y. Sun, G. Wu, Quorum sensing responses of r-/K-strategists Nitrospira in continuous flow and sequencing batch nitrifying biofilm reactors, Sci Total Environ., 857 (2023) 159328, doi: 10.1016/j.scitotenv.2022.159328.