References
  -  L. Lin, H. Yang, X. Xu, Effects of water pollution on human
    health and disease heterogeneity: a review, Front. Environ. Sci.,
    10 (2022) 880246, doi: 10.3389/fenvs.2022.880246. 
-  X. Xu, H. Yang, C. Li, Theoretical model and actual
    characteristics of air pollution affecting health cost: a review,
    Int. J. Environ. Res. Public Health, 19 (2022) 3532, doi: 10.3390/ijerph19063532. 
-  S. Khan, A. Malik, Toxicity evaluation of textile effluents and
    role of native soil bacterium in biodegradation of a textile
    dye, Environ. Sci. Pollut. Res., 25 (2018) 4446–4458. 
-  K. Shirvanimoghaddam, B. Motamed, S. Ramakrishna,
    M. Naebe, Death by waste: fashion and textile circular
    economy case, Sci. Total Environ., 718 (2020) 137317,
    doi: 10.1016/j.scitotenv.2020.137317. 
-  S. Popli, U. Patel, Destruction of azo dyes by anaerobic and
    aerobic sequential biological treatment: a review, Int. J. Environ.
    Sci. Technol., 12 (2014) 405–420. 
-  K. Siddique, M. Rizwan, M.J. Shahid, S. Ali, R. Ahmad, H. Rizvi,
    Textile Wastewater Treatment Options: A Critical Review,
    N. Anjum, S. Gill, N. Tuteja, Eds., Enhancing Cleanup of
    Environmental Pollutants, Springer, Cham, 2017, pp. 183–207. 
-  T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation
    of dyes in textile effluent: a critical review on current treatment
    technologies with a proposed alternative, Bioresour. Technol.,
    77 (2001) 247–255. 
-  S. Mukherji, J. Ruparelia, S. Agnihotri, Antimicrobial Activity
    of Silver and Copper Nanoparticles: Variation in Sensitivity
    Across Various Strains of Bacteria and Fungi, N. Cioffi, M. Rai,
    Eds., Nano-antimicrobials: progress and prospects, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 225–251. 
-  X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-Fenton technology for azo dye wastewater treatment using
    microbial reverse-electrodialysis electrolysis cell, Bioresour.
    Technol., 228 (2017) 322–329. 
-  S. Agnihotri, N.K. Dhiman, A. Tripathi, Antimicrobial Surface
    Modification of Polymeric Biomaterials, A. Tiwari, Ed.,
    Handbook of Antimicrobial Coatings, Elsevier, New York,
    2018, pp. 435–486. 
-  M.S. Akhtar, J. Panwar, Y.S. Yun, Biogenic synthesis of metallic
    nanoparticles by plant extracts, ACS Sustainable Chem. Eng.,
    1 (2013) 591–602. 
-  R.G. Saratale, I. Karuppusamy, G.S. Saratale, A. Pugazhendhi,
    G. Kumar, Y. Park, G.S. Ghodake, R.N. Bhargava, J.R. Banu,
    H.S. Shin, A comprehensive review on green nanomaterials
    using biological systems: recent perception and their future
    applications, Colloids Surf., B, 170 (2018) 20–35. 
-  P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar,
    M.I. Khan, R. Parishcha, R. Ajaykumar, M. Alam, R. Kumar,
    Fungus mediated synthesis of silver nanoparticles and their
    immobilization in the mycelial matrix: a novel biological
    approach to nanoparticle synthesis, Nano Lett., 1 (2001)
  515–519. 
-  S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on
    plants extract mediated synthesis of silver nanoparticles for
    antimicrobial applications: a green expertise, J. Adv. Res.,
    17 (2016) 17–28. 
-  J. Singh, N. Singh, A. Rathi, D. Kukkar, M. Rawat, Facile approach
    to synthesize and characterization of silver nanoparticles by
    using mulberry leaves extract in aqueous medium and its
    application in antimicrobial activity, J. Nanostruct., 7 (2017)
    134–140. 
-  C. Ramteke, T. Chakrabarti, B.K. Sarangi, R. Pandey, Synthesis
    of silver nanoparticles from the aqueous extract of leaves of
    Ocimum sanctum for enhanced antibacterial activity, J. Chem.,
    2013 (2013) 278925, doi: 10.1155/2013/278925. 
-  J. Singh, P. Kukkar, H. Sammi, M. Rawat, G. Singh, D. Kukkar,
    Enhanced catalytic reduction of 4-nitrophenol and Congo red
    dye by silver nanoparticles prepared from Azadirachta indica leaf extract under direct sunlight exposure, Part. Sci. Technol.,
    37 (2019) 434–443. 
-  J. Singh, G. Kaur, P. Kaur, R. Bajaj, M. Rawat, A review on green
    synthesis and characterization of silver nanoparticles and their
    applications: a green nanoworld, World J. Pharm. Pharm. Sci.,
    7 (2016) 730–762. 
-  N.A.N. Mohamad, N.A. Arham, J. Jai, A. Hadi, Plant extract as
    reducing agent in synthesis of metallic nanoparticles: a review,
    Adv. Mater. Res., 832 (2013) 350–355. 
-  F. Mujeeb, P. Bajpai, N. Pathak, Phytochemical evaluation,
    antimicrobial activity, and determination of bioactive
    components from leaves of Aegle marmelos, Biomed. Res. Int.,
    2014 (2014) 497606, doi: 10.1155/2014/497606. 
-  S. Kothari, V. Mishra, S. Bharat, S.D. Tonpay, Antimicrobial
    activity and phytochemical screening of serial extracts from
    leaves of Aegle marmelos (Linn.), Acta Pol. Pharm.–Drug Res.,
    68 (2011) 687–692. 
-  V.K. Bajpai, P. Agrawal, B.H. Bang, Y.H. Park, Phytochemical
    analysis, antioxidant and antilipid peroxidation effects of
    a medicinal plant, Adhatoda vasica, Front. Life Sci., 8 (2015)
    305–312. 
-  S. Sankhalkar, V. Vernekar, Quantitative and qualitative analysis
    of phenolic and flavonoid content in Moringa oleifera Lam and
  Ocimum tenuiflorum L., Pharmacogn. Res., 8 (2016) 16–21. 
-  S. Agnihotri, S. Mukherji, S. Mukherji, Size-controlled silver
    nanoparticles synthesized over the range 5–100 nm using
    the same protocol and their antibacterial efficacy, RSC Adv.,
    4 (2014) 3974–3983. 
-  S. Bharti, S. Agnihotri, S. Mukherji, S. Mukherji, Effectiveness
    of immobilized silver nanoparticles in inactivation of
    pathogenic bacteria, J. Environ. Res. Dev., 9 (2015) 849–856. 
-  M. Beg, A. Maji, A.K. Mandal, S. Das, M.N. Aktara, P.K. Jha,
    M. Hossain, Green synthesis of silver nanoparticles using
    Pongamia pinnata seed: characterization, antibacterial property,
    and spectroscopic investigation of interaction with human
    serum albumin, J. Mol. Recognit., 30 (2017) e2565, doi: 10.1002/jmr.2565. 
-  K. Kalimuthu, R.S. Babu, D. Venkataraman, M. Bilal,
    S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus
    licheniformis, Colloids Surf., B, 65 (2008) 150–153. 
-  D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis
    of silver nanoparticles using Clitoria ternatea flower: an efficient
    catalyst for removal of Methyl orange, Int. J. Environ. Anal.
    Chem., 102 (2020) 5247–5263. 
-  W. Routray, V. Orsat, Blueberries and their anthocyanins: factors
    affecting biosynthesis and properties, Compr. Rev. Food Sci.
    Food Saf., 10 (2011) 303–320. 
-  M.G. Guzmán, J. Dille, S. Godet, Synthesis of silver nanoparticles
    by chemical reduction method and their antibacterial activity,
    Int. J. Chem. Biomol. Eng., 2 (2009) 104–111. 
-  S.R. Arote, P.G. Yeole, Pongamia pinnata L: a comprehensive
    review, Int. J. Pharm. Tech. Res., 2 (2010) 2283–2290. 
-  R.S. Priya, D. Geetha, P.S. Ramesh, Antioxidant activity of
    chemically synthesized AgNPs and biosynthesized Pongamia
    pinnata leaf extract mediated AgNPs – a comparative study,
    Ecotoxicol. Environ. Saf., 134 (2016) 308–318. 
-  R.W. Raut, N.S. Kolekar, J.R. Lakkakula, V.D. Mendhulkar,
    S.B. Kashid, Extracellular synthesis of silver nanoparticles
    using dried leaves of Pongamia pinnata (L) pierre, Nano-Micro
    Lett., 2 (2010) 106–113. 
-  P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J.L. Duroux, A DFT
    study of the reactivity of OH groups in quercetin and taxifolin
    antioxidants: the specificity of the 3-OH site, Food Chem.,
    97 (2006) 679–688. 
-  M. Sharma, S. Yadav, N. Ganesh, M.M. Srivastava, S. Srivastava,
    Biofabrication and characterization of flavonoid-loaded Ag,
    Au, Au–Ag bimetallic nanoparticles using seed extract of
    the plant Madhuca longifolia for the enhancement in wound
    healing bio-efficacy, Prog. Biomater., 8 (2019) 51–63. 
-  K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver
    nanoparticles synthesized using Urtica dioica Linn. leaves
    and their synergistic effects with antibiotics, J. Radiat. Res.
    Appl. Sci., 9 (2016) 217–227. 
-  U. Farooq, J. Ahmed, S.M. Alshehri, T. Ahmad, High surface area
    sodium tantalate nanoparticles with enhanced photocatalytic
    and electrical properties prepared through polymeric citrate
    precursor route, ACS Omega, 4 (2019) 19408−19419. 
-  H. Anwer, A. Mahmood, J. Lee, K.H. Kim, J.W. Park, A.C. Yip,
    Photocatalysts for degradation of dyes in industrial effluents:
    opportunities and challenges, Nano Res., 12 (2019) 955–972. 
-  A.Y. Zhang, W.K. Wang, D.N. Pei, H.Q. Yu, Degradation of
    refractory pollutants under solar light irradiation by a robust
	  and self-protected ZnO/CdS/TiO2 hybrid photocatalyst,
  Water Res., 92 (2016) 78–86. 
-  X.R. Li, J.G. Wang, Y. Men, Z.F. Bian, TiO2 mesocrystal with
    exposed (001) facets and CdS quantum dots as an active visible
    photocatalyst for selective oxidation reactions, Appl. Catal., B,
  187 (2016) 115–121. 
-  G. Kumari, R. Kamarudheen, E. Zoethout, A. Baldi,
    Photocatalytic surface restructuring in individual silver
    nanoparticles, ACS Catal., 11 (2011) 3478–3486. 
-  J.J. Jung, J.W. Jang, J.W. Park, Effect of generation growth on
    photocatalytic activity of nano TiO2-magnetic cored dendrimers,
  J. Ind. Eng. Chem., 44 (2016) 52–59. 
-  H. Answer, J.W. Park, Synthesis and characterization of
    a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for
    degradation of organic contaminants, J. Hazard. Mater.,
  358 (2018) 416–426. 
-  F.A. Alharthi, A.A. Alghamdi, N. Al-Zaqri, H.S. Alanazi,
    A.A. Alsyahi, A.E. Marghany, N. Ahmad, Facile one-pot green
    synthesis of Ag–ZnO nanocomposites using potato peel and
    their Ag concentration dependent photocatalytic properties,
    Sci. Rep., 10 (2020) 20229, doi: 10.1038/s41598-020-77426-y. 
-  F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer,
    M.O. Amin, M. Madkour, The effect of surface charge on
    photocatalytic degradation of methylene blue dye using
    chargeable titania nanoparticles, Sci. Rep., 8 (2018) 7104,
    doi: 10.1038/s41598-018-25673-5. 
-  M. Siddique, R. Khan, A.F. Khan, R. Farooq, Improved photocatalytic
    activity of TiO2 coupling ultrasound for Reactive
  Blue 19 degradation, J. Chem. Soc. Pak., 36 (2014) 37–43. 
-  T. Theivasanthi, M. Alagar, Electrolytic synthesis and
    characterization of silver nanopowder, Nano Biomed. Eng.,
    4 (2012) 58–65. 
-  T. Ahmad, R. Phul, P. Alam, I.H. Lone, M. Shahazad, J. Ahmed,
    T. Ahamad, S.M. Alshehri, Dielectric, optical and enhanced
    photocatalytic properties of CuCrO2 nanoparticles, RSC Adv.,
  7 (2017) 27549−27557. 
-  S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran,
    P.C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles
    in dye effluent treatment: a review on synthesis, treatment
    methods, mechanisms, photocatalytic degradation, toxic
    effects and mitigation of toxicity, J. Photochem. Photobiol., B,
    205 (2020) 111823, doi: 10.1016/j.jphotobiol.2020.111823. 
-  M.S. Sumi, A. Devadiga, V. Shetty, M.B. Saidutta, Solar
    photocatalytically active, engineered silver nanoparticle
    synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf), J. Exp. Nanosci., 12 (2016) 1–19. 
-  M. Mavaei, A. Chahardoli, Y. Shokoohinia, A. Khoshroo,
    A. Fattahi, One-step synthesized silver nanoparticles
    using isoimperatorin: evaluation of photocatalytic, and
    electrochemical activities, Sci. Rep., 10 (2020) 1762, doi: 10.1038/s41598-020-58697-x. 
-  A. Manuel, A. Kirkey, N. Mahdi, K. Shankar, Plexcitonics
    – fundamental principles and optoelectronic applications,
    J. Mater. Chem. C, 7 (2018) 1821–1853. 
-  A. Liang, L. Qingye, W. Guiqing, J. Zhiliang, The surface-plasmon-resonance effect of nanogold/silver and its analytical
    applications, TrAC, Trends Anal. Chem., 37 (2012) 32–47. 
-  S. Li, X. Bing, C. Jialin, L. Yanping, Z. Junlei, W. Hengwei,
    L. Jianshe, Constructing a plasmonic p-n heterojunction
    photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently
    removing broad-spectrum antibiotics, Sep. Purif. Technol.,
  254 (2021) 117579, doi: 10.1016/j.seppur.2020.117579. 
-  V.G. Belessiotis, G.K. Ahanassios, Plasmonic silver (Ag)-based
    photocatalysts for H2 production and CO2 conversion: review,
    analysis and perspectives, Renewable Energy, 195 (2022)
  497–515. 
-  N.K. Nasab, Z. Sabouri, S. Ghazal, M. Darroudi, Greenbased
    synthesis of mixed-phase silver nanoparticles as an
    effective photocatalyst and investigation of their antibacterial
    properties, J. Mol. Struct., 1203 (2020) 127411, doi: 10.1016/j.molstruc.2019.127411. 
-  F. Naaz, U. Farooq, M.M. Khan, T. Ahmad, Multifunctional
    efficacy of environmentally benign silver nanospheres for
    organic transformation, photocatalysis, and water remediation,
    ACS Omega, 5 (2020) 26063–26076. 
-  J. Singh, A.S. Dhaliwal, Plasmon-induced photocatalytic
    degradation of methylene blue dye using biosynthesized silver
    nanoparticles as photocatalyst, Environ. Technol., 41 (2018)
    1520–1534. 
-  T. Ahmed, M. Noman, M. Shahid, M.B.K. Niazi, S. Hussain,
    N. Manzoor, B. Li, Green synthesis of silver nanoparticles
    transformed synthetic textile dye into less toxic intermediate
    molecules through LC-MS analysis and treated the actual
    wastewater, Environ. Res., 191 (2020) 110142, doi: 10.1016/j.envres.2020.110142. 
-  N. Nagar, V. Devra, A kinetic study on the degradation and
    biodegradability of silver nanoparticles catalyzed Methyl
    orange and textile effluents, Heliyon, 5 (2019) e01356,
    doi: 10.1016/j.heliyon.2019.e01356. 
-  M. Sarkar, S. Denrah, M. Das, M. Das, Statistical optimization of
    bio-mediated silver nanoparticles synthesis for use in catalytic
    degradation of some azo dyes, Chem. Phys. Impact, 3 (2021)
  100053, doi: 10.1016/j.chphi.2021.100053. 
-  S. Raina, A. Roy, N. Bharadvaja, Degradation of dyes using
    biologically synthesized silver and copper nanoparticles,
    Environ. Nanotechnol. Monit. Manage., 13 (2020) 100278,
    doi: 10.1016/j.enmm.2019.100278. 
-  A. Nautiyal, S.R. Shukla, Silver nanoparticles catalyzed
    reductive decolorization of spent dye bath containing acid dye
    and its reuse in dyeing, J. Water Process Eng., 22 (2018) 276–285. 
-  S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan,
    P. Maruthamuthu, Effect of loaded silver nanoparticles on TiO2
    for photocatalytic degradation of Acid Red 88, Sol. Energy
  Mater. Sol. Cells, 92 (2008) 929–937. 
-  R. Karthik, M. Govindasamy, S.M. Chen, Y.H. Cheng,
    P. Muthukrishnan, S. Padmavathy, A. Elangovan, Biosynthesis
    of silver nanoparticles by using Camellia japonica leaf extract
    for the electrocatalytic reduction of nitrobenzene and
    photocatalytic degradation of Eosin-Y, J. Photochem. Photobiol.,
    B, 170 (2017) 164–172.