References

  1. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review, Adv. Colloid Interface Sci., 193–194 (2013) 24–34.
  2. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review, Adv. Colloid Interface Sci., 209 (2014) 172–184.
  3. G. Crini, Non-conventional low-cost adsorbents for dye removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
  4. V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malviya, Decolorization of mixture of dyes: a critical review, Global J. Environ. Sci. Manage., 1 (2015) 71–94.
  5. Z. Salahshoor, A. Shahbazi, Review of the use of mesoporous silicas for removing dye from textile wastewater, Eur. J. Environ. Sci., 4 (2014) 116–130.
  6. J. Ye, S. Liu, M. Tian, W. Li, B. Hu, W. Zhou, Q. Jia, Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry, Talanta, 118 (2014) 231–237.
  7. N. Tara, M.A. Abomuti, F.M. Alshareef, O. Abdullah, E.S. Allehyani, S.A. Chaudhry, S. Oh, Nigella sativa-manganese ferrite-reduced graphene oxide-based nanomaterial: a novel adsorbent for water treatment, Molecules, 28 (2023) 5007, doi: 10.3390/molecules28135007.
  8. H. Singh, G. Chauhan, A.K. Jain, S.K. Sharma, Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 122–135.
  9. M.A. Malik, L. AlHarbi, A. Nabi, K.A. Alzahrani, K. Narasimharao, M.R. Kamli, Facile synthesis of magnetic Nigella sativa seeds: advances on nano-formulation approaches for delivering antioxidants and their antifungal activity against Candida albicans, Pharmaceutics, 15 (2023) 642, doi: 10.3390/pharmaceutics15020642.
  10. O.I. Ali, E.R. Zaki, M.S. Abdalla, S.M. Ahmed, Mesoporous Ag-functionalized magnetic activated carbon-based agrowaste for efficient removal of Pb(II), Cd(II), and microorganisms from wastewater, Environ. Sci. Pollut. Res., 30 (2023) 53548–53565.
  11. M. Bagherzadeh, B. Aslibeiki, N. Arsalani, Preparation of Fe3O4/vine shoots derived activated carbon nanocomposite for improved removal of Cr(VI) from aqueous solutions, Sci. Rep., 13 (2023) 3960, doi: 10.1038/s41598-023-31015-x.
  12. S. Sismanoglu, M.K. Akalin, G.O. Akalin, F. Topak, Effective removal of cationic dyes from aqueous solutions by using black cumin (Nigella sativa) seed pulp and biochar, BioResources, 18 (2023) 3414–3439.
  13. S. Rakass, A. Mohmoud, H.O. Hassani, M. Abboudi, F. Kooli, F. Al Wadaani, Modified Nigella sativa seeds as a novel efficient natural adsorbent for removal of methylene blue dye, Molecules, 23 (2018) 1950, doi: 10.3390/molecules23081950.
  14. S.I. Siddiqui, G. Rathi, S.A. Chaudhry, Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: thermodynamic, kinetic and isotherm studies, J. Mol. Liq., 264 (2018) 275–284.
  15. S.I. Siddiqui, S.A. Chaudhry, Nigella sativa plant-based nanocomposite-MnFe2O4/BC: an antibacterial material for water purification, J. Cleaner Prod., 200 (2018) 996–1008.
  16. S.I. Siddiqui, O. Manzoor, Mohd. Mohsin, S.A. Chaudhry, Nigella sativa seed-based nanocomposite-MnO2/BC: an antibacterial material for photocatalytic degradation, and adsorptive removal of dye from water, Environ. Res., 171 (2019) 328–340.
  17. S.I. Siddiqui, F. Zohra, S.A. Chaudhry, Nigella sativa seed based nanohybrid composite-Fe2O3–SnO2/BC: a novel material for enhanced adsorptive removal of methylene blue from water, Environ. Res., 178 (2019) 108667, doi: 10.1016/j.envres.2019.108667.
  18. N. Tara, S.I. Siddiqui, R.K. Nirala, N.K. Abdulla, S.A. Chaudhry, Synthesis of antibacterial, antioxidant and magnetic Nigella sativa-graphene oxide-based nanocomposite BC-GO@Fe3O4 for water treatment, Colloid Interface Sci. Commun., 37 (2020) 100281, doi: 10.1016/j.colcom.2020.100281.
  19. P.M. Thabede, N.D. Shooto, T. Xaba, E.B. Naidoo, Adsorption studies of toxic cadmium(II) and chromium(VI) ions from aqueous solution by activated black cumin (Nigella sativa) seeds, J. Environ. Chem. Eng., 8 (2020) 104045, doi: 10.1016/j.jece.2020.104045.
  20. Y. İşlek Coşkun, Biosorption of copper by a natural byproduct material: pressed black cumin cakes, Anal. Lett., 53 (2020) 1247–1265.
  21. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Enhanced arsenic(III) adsorption from aqueous solution by magnetic pine cone biomass, Mater. Chem. Phys., 222 (2019) 20–30.
  22. A. Choudhry, A. Sharma, T.A. Khan, S.A. Chaudhry, Flax seeds based magnetic hybrid nanocomposite: an advance and sustainable material for water cleansing, J. Water Process Eng., 42 (2021) 102150, doi: 10.1016/j.jwpe.2021.102150.
  23. L. Chen, B. Li, Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey, Food Chem., 141 (2013) 23–28.
  24. Z. Heidarinejad, O. Rahmanian, M. Fazlzadeh, M. Heidari, Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound, J. Mol. Liq., 264 (2018) 591–599.
  25. A.S. Franca, L.S. Oliveira, A.A. Nunes, C.C.O. Alves, Microwave assisted thermal treatment of defective coffee beans press cake for the production of adsorbents, Bioresour. Technol., 101 (2010) 1068–1074.
  26. A.A. Nunes, A.S. Franca, L.S. Oliveira, Activated carbons from waste biomass: an alternative use for biodiesel production solid residues, Bioresour. Technol., 100 (2009) 1786–1792.
  27. D.L. Nunes, A.S. Franca, L.S. Oliveira, Use of Raphanus sativus L press cake, a solid residue from biodiesel processing, in the production of adsorbents by microwave activation, Environ. Technol., 32 (2011) 1073–1083.
  28. B. Geng, Z. Jin, T. Li, X. Qi, Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ., 407 (2009) 4994–5000.
  29. H.V. Tran, L.D. Tran, T.N. Nguyen, Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution, Mater. Sci. Eng. C, 30 (2010) 304–310.
  30. H.Y. Huang, Y.T. Shieh, C.M. Shih, Y.K. Twu, Magnetic chitosan/ iron (II, III) oxide nanoparticles prepared by spray-drying, Carbohydr. Polym., 81 (2010) 906–910.
  31. R.A. Al-Husseiny, S.E. Ebrahim, Effective removal of methylene blue from wastewater using magnetite/geopolymer composite: synthesis, characterization and column adsorption study, Inorg. Chem. Commun., 139 (2022) 109318, doi: 10.1016/j.inoche.2022.109318.
  32. B. Stephen Inbaraj, B.H. Chen, Dye adsorption characteristics of magnetite nanoparticles coated with a biopolymer poly (γ-glutamic acid), Bioresour. Technol., 102 (2011) 8868–8876.
  33. Y.A. Teymur, F. Güzel, Ultra-efficient removal of methylene blue, oxytetracycline, and lead(II) by activated carbon derived from black cumin (Nigella sativa) processing solid waste, J. Water Process Eng., 54 (2023) 103940, doi: 10.1016/j.jwpe.2023.103940.
  34. K. Narasimharao, S. Al-Thabaiti, H.K. Rajor, M. Mokhtar, A. Alsheshri, S.Y. Alfaifi, S.I. Siddiqui, N.K. Abdulla,
    Fe3O4@ date seeds powder: a sustainable nanocomposite material for wastewater treatment, J. Mater. Res. Technol., 18 (2022) 3581–3597.
  35. N. Fiol, I. Villaescusa, Determination of sorbent point zero charge: usefulness in sorption studies, Environ. Chem. Lett., 7 (2009) 79–84.
  36. T.M. Petrova, L. Fachikov, J. Hristov, The magnetite as adsorbent for some hazardous species from aqueous solutions: a review, Chem. Phys., 3 (2011) 134–152.
  37. J.-M. Lee, D.-S. Lim, S.-H. Jeon, D.H. Hur, Zeta potentials of magnetite particles and alloy 690 surfaces in alkaline solutions, Materials, 13 (2020) 3999, doi: 10.3390/ma13183999.
  38. S.I. Siddiqui, S.A. Chaudhry, Nanohybrid composite Fe2O3-ZrO2/BC for inhibiting the growth of bacteria and adsorptive removal of arsenic and dyes from water, J. Cleaner Prod., 223 (2019) 849–868.
  39. W. Jiang, L. Zhang, X. Guo, M. Yang, Y. Lu, Y. Wang, Y. Zheng, G. Wei, Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method, Environ. Technol. U.K., 42 (2021) 337–350.
  40. L. Thi Mong Thy, N. Hoan Kiem, T. Hoang Tu, L. Minh Phu, D. Thi Yen Oanh, H. Minh Nam, M. Thanh Phong,
    N.H. Hieu, Fabrication of manganese ferrite/graphene oxide nanocomposites for removal of nickel ions, methylene blue from water, Chem. Phys., 533 (2020) 110700, doi: 10.1016/j.chemphys.2020.110700.
  41. Y. Kismir, A.Z. Aroguz, Adsorption characteristics of the hazardous dye Brilliant Green on Saklıkent mud, Chem. Eng. J., 172 (2011) 199–206.
  42. T.D. Çiftçi, Adsorptive properties of Fe3O4/Ni/NixB nanocomposite coated nutshell for the removal of arsenic(III) and arsenic(V) from waters, Cogent Chem., 3 (2017) 1–15.
  43. M. Ghaedi, H. Hossainian, M. Montazerozohori, A. Shokrollahi, F. Shojaipour, M. Soylak, M.K. Purkait, A novel acorn-based adsorbent for the removal of brilliant green, Desalination, 281 (2011) 226–233.
  44. V.S. Mane, I.D. Mall, V.C. Srivastava, Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash, J. Environ. Manage., 84 (2007) 390–400.
  45. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  46. N.D. Hutson, R.T. Yang, Theoretical basis for the Dubinin–Radushkevich (D-R) adsorption isotherm equation, Adsorption, 3 (1997) 189–195.