References

  1. B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic compounds (Cl-VOCs) in environment — sources, potential human health impacts, and current remediation technologies, Environ. Int., 71 (2014) 118–138.
  2. S.M. Cordova-Rosa, R.I. Dams, E.V. Cordova-Rosa, M.R. Radetski, A.X.R. Corrêa, C.M. Radetski, Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater treatment plant, J. Hazard. Mater., 164 (2009) 61–66.
  3. K. Ikehata, M.G. El-Din, S.A. Snyder, Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater, Ozone Sci. Eng., 30 (2008) 21–26.
  4. D.W. Sundstrom, B.A. Weir, H.E. Klei, Destruction of aromatic pollutants by UV light catalyzed oxidation with hydrogen peroxide, Environ. Prog., 8 (1989) 6–11.
  5. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167.
  6. G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 160 (2008) 265–288.
  7. S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Phenol removal from industrial wastewaters: a short review, Desal. Water Treat., 53 (2015) 2215–2234.
  8. C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez, Methodologies for the extraction of phenolic compounds from environmental samples: new approaches, Molecules, 14 (2009) 298–320.
  9. S.A. Boyd, G. Sheng, B.J. Teppen, C.T. Johnston, Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays, Environ. Sci. Technol., 35 (2001) 4227–4234.
  10. Z. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction between tetracycline and smectite in aqueous solution, J. Colloid Interface Sci., 341 (2010) 311–319.
  11. A. de Mello Ferreira Guimarães, V.S.T. Ciminelli, W.L. Vasconcelos, Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions, Appl. Clay Sci., 42 (2009) 410–414.
  12. C. Rey, C. Combes, C. Drouet, H. Sfihi, A. Barroug, Physicochemical properties of nanocrystalline apatites: implications for biominerals and biomaterials, Mater. Sci. Eng. C, 27 (2007) 198–205.
  13. E. Picard, H. Gauthier, J.F. Gérard, E. Espuche, Influence of the intercalated cations on the surface energy of montmorillonites: consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites, J. Colloid Interface Sci., 307 (2007) 364–376.
  14. C. Queffélec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Surface modification using phosphonic acids and esters, Chem. Rev., 112 (2012) 3777–3807.
  15. D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova, J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interfaces, 9 (2002) 529–540.
  16. S.F.A. Shattar, N.A. Zakaria, K.Y. Foo, Feasibility of montmorillonite-assisted adsorption process for the effective treatment of organo-pesticides, Desal. Water Treat., 57 (2016) 13645–13677.
  17. V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological interactions of graphene-family nanomaterials: An interdisciplinary review, Chem. Res. Toxicol., 25 (2012) 15–34.
  18. B.F. Sels, D.E. De Vos, P.A. Jacobs, Hydrotalcite-like anionic clays in catalytic organic reactions, Catal. Rev. Sci. Eng., 43 (2001) 443–488.
  19. A. Dümig, W. Häusler, M. Steffens, I. Kögel-Knabner, Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo-mineral associations, Geochim. Cosmochim. Acta, 85 (2012) 1–18.
  20. J.A. Cecilia, C. García-Sancho, E. Vilarrasa-García, J. Jiménez-Jiménez, E. Rodriguez-Castellón, Synthesis, characterization, uses and applications of porous clays heterostructures: a review, Chem. Rec., 18 (2018) 1085–1104.
  21. S.A. Hadigheh, R.J. Gravina, S.T. Smith, Effect of acid attack on FRP-to-concrete bonded interfaces, Constr. Build. Mater., 152 (2017) 285–303.
  22. P. Komadel, J. Madejová, Acid Activation of Clay Minerals, 2nd ed., Institute of Inorganic Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia, 2013. doi: 10.1016/B978-0-08-098258-8.00013-4
  23. P. Komadel, Acid activated clays: materials in continuous demand, Appl. Clay Sci., 131 (2016) 84–99.
  24. F. Hussin, M.K. Aroua, W.M.A.W. Daud, Textural characteristics, surface chemistry and activation of bleaching earth: a review, Chem. Eng. J., 170 (2011) 90–106.
  25. F.R. Valenzuela Díaz, P. de Souza Santos, Studies on the acid activation of Brazilian smectitic clays, Quim. Nova, 24 (2001) 345–353.
  26. A. Gil, L.M. Gandía, M.A. Vicente, Recent advances in the synthesis and catalytic applications of pillared clays, Catal. Rev. Sci. Eng., 42 (2000) 145–212.
  27. H. Zhao, C.H. Zhou, L.M. Wu, J.Y. Lou, N. Li, H.M. Yang, D.S. Tong, W.H. Yu, Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated montmorillonite catalysts, Appl. Clay Sci., 74 (2013) 154–162.
  28. C. Breen, R. Watson, J. Madejová, P. Komadel, Z. Klapyta, Acid-activated organoclays: preparation, characterization and catalytic activity of acid-treated tetraalkyl ammonium exchanged smectites, Langmuir, 13 (1997) 6473–6479.
  29. R. Mokaya, W. Jones, Pillared clays and pillared acid-activated clays: a comparative-study of physical, acidic, and catalytic properties, J. Catal., 153 (1995) 76–85.
  30. M. Lenarda, L. Storaro, A. Talon, E. Moretti, P. Riello, Solid acid catalysts from clays: preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions, J. Colloid Interface Sci., 311 (2007) 537–543.
  31. P. Komadel, J. Madejová, Chapter 7.1 Acid Activation of Clay Minerals, Developments in Clay Science, Vol. 1, Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia, 2006, pp. 263–287. doi: 10.1016/S1572-4352(05)01008-1
  32. Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Polymer engineering based on reversible covalent chemistry: a promising innovative pathway towards new materials and new functionalities, Prog. Polym. Sci., 80 (2018) 39–93.
  33. M. Shamzhy, M. Opanasenko, P. Concepción, A. Martínez, New trends in tailoring active sites in zeolite-based catalysts, Chem. Soc. Rev., 48 (2019) 1095–1149.
  34. R. Raj, Fundamental research in structural ceramics for service near 2,000°C, J. Am. Ceram. Soc., 76 (1993) 2147–2174.
  35. H. Su, W. Zhou, Mechanism of accelerated dissolution of mineral crystals by cavitation erosion, Acta Geochim., 39 (2020) 11–42.
  36. A. Mandal, B.B. Dey, S.K. Das, Thermodynamics, kinetics, and isotherms for phenol removal from wastewater using red mud, Water Pract. Technol., 15 (2020) 705–722.
  37. N. Bar, A. Mandal, S.K. Das, A Machine Learning Technique for the Study of Adsorption of Phenol Using Solid Waste, S. Mukhopadhyay, S. Sarkar, J.K. Mandal, S. Roy, Eds., AI to Improve e-Governance and Eminence of Life. Studies in Big Data, Vol. 130, Springer, Singapore, 2023. doi: 10.1007/978-981-99-4677-8_7
  38. D. Aran, A. Maul, J.F. Masfaraud, A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance, C.R. Geosci., 340 (2008) 865–871.
  39. H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear and non-linear equations of pseudo-first-order and pseudosecond- order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018) 244–254.
  40. Y.S. Ho, G. McKay, Modèle de pseudo-second-order pour les processus de sorption, Processus Biochimie., 34 (1999) 451–465.
  41. M. Aazza, H. Ahlafi, H. Moussout, H. Maghat, Adsorption of metha-nitrophenol onto alumina and HDTMA modified alumina: kinetic, isotherm and mechanism investigations, J. Mol. Liq., 268 (2018) 587–597.
  42. M.S. Barrios, L.V.F. González, M.A.V. Rodríguez, J.M.M. Pozas, Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties, Appl. Clay Sci., 10 (1995) 247–258.
  43. S. Saagari, D. Anusha, L. Priyanka, N. Sailaja, Data warehousing, data mining, OLAP and OLTP technologies are indispensable elements to support decision-making process in industrial world, Int. J. Innovation Technol. Explor. Eng., 5 (2015) 1–7.
  44. J.T. Kloprogge, E. Mahmutagic, R.L. Frost, Mid-infrared and infrared emission spectroscopy of Cu-exchanged montmorillonite, J. Colloid Interface Sci., 296 (2006) 640–646.
  45. J. Madejová, FTIR techniques in clay mineral studies, Vib. Spectrosc., 31 (2003) 1–10.
  46. W. Trabelsi, A. Tlili, Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia), J. Afr. Earth Sci., 129 (2017) 647–658.
  47. H. Ouallal, M. Azrour, M. Messaoudi, H. Moussout, L. Messaoudi, N. Tijani, Incorporation effect of olive pomace on the properties of tubular membranes, J. Environ. Chem. Eng., 8 (2020) 103668, doi: 10.1016/j.jece.2020.103668.
  48. D. Ovadyahu, S. Yariv, I. Lapides, Mechanochemical adsorption of phenol by tot swelling clay minerals I. Thermo- IR-spectroscopy and X-ray study, J. Therm. Anal., 51 (1998) 415–430.
  49. S. Saltzman, S. Yariv, Infrared study of the sorption of phenol and p-nitrophenol by montmorillonite, Soil Sci. Soc. Am. J., 39 (1975) 474–479.
  50. Y. Bulut, H. Aydin, A kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination, 194 (2006) 259–267.
  51. A.K. Jain, Suhas, A. Bhatnagar, Methylphenols removal from water by low-cost adsorbents, J. Colloid Interface Sci., 251 (2002) 39–45.
  52. B.K. Singh, N.S. Rawat, Comparative sorption equilibrium studies of toxic phenols on flyash and impregnated flyash, J. Chem. Technol. Biotechnol., 61 (1994) 307–317.
  53. B.K. Singh, P.S. Nayak, Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash, Adsorpt. Sci. Technol., 22 (2004) 295–310.
  54. B.H. Hameed, Equilibrium and kinetics studies of 2,4,6-trichlorophenol adsorption onto activated clay, Colloids Surf., A, 307 (2007) 45–52.
  55. R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: kinetics, isotherms and error analysis, Chem. Eng. J., 171 (2011) 1004–1011.
  56. B. Özkaya, Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models, J. Hazard. Mater., 129 (2006) 158–163.
  57. E. Bazrafshan, P. Amirian, A.H. Mahvi, A. Ansari-Moghaddam, Application of adsorption process for phenolic compounds removal from aqueous environments: a systematic review, Global Nest J., 18 (2016) 146–163.
  58. E. Eren, B. Afsin, Removal of basic dye using raw and acid activated bentonite samples, J. Hazard. Mater., 166 (2009) 830–835.
  59. I. Poljanšek, M. Krajnc, Characterization of phenolformaldehyde prepolymer resins by in line FTIR spectroscopy, Acta Chim. Slov., 52 (2005) 238–244.
  60. R. Liu, R.L. Frost, W.N. Martens, Near infrared and mid infrared investigations of adsorbed phenol on HDTMAB organoclays, Mater. Chem. Phys., 113 (2009) 707–713.
  61. H. Ouallal, Y. Dehmani, H. Moussout, L. Messaoudi, M. Azrour, Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays, Heliyon, 5 (2019) e01616, doi: 10.1016/j.heliyon.2019.e01616.
  62. A. Mandal, P. Mukhopadhyay, S.K. Das, Adsorptive removal of phenol from wastewater using guava tree bark, Environ. Sci. Pollut. Res., 27 (2020) 23937–23949.
  63. A. Mandal, P. Mukhopadhyay, S.K. Das, Efficiency analysis of rice husk as adsorbent for removal of phenol from wastewater, J. Environ. Anal. Toxicol., 9 (2019) 605–612.
  64. A. Mandal, P. Mukhopadhyay, S.K. Das, The study of adsorption efficiency of rice husk ash for removal of phenol from wastewater with low initial phenol concentration, SN Appl. Sci., 1 (2019) 192, doi: 10.1007/s42452-019-0203-3.
  65. A. Das, N. Bar, S.K. Das, Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: batch experiments, statistical, and GA modeling, Int. J. Environ. Sci. Technol., 20 (2022) 537–550.
  66. S. Bhattacharya, N. Bar, B. Rajbansi, S.K. Das, Synthesis of chitosan-nTiO2 nanocomposite, application in adsorptive removal of Cu(II)—adsorption and desorption study, mechanism, scale-up design, statistical, and genetic algorithm modeling, Appl. Organomet. Chem., 37 (2023) e7094, doi: 10.1002/aoc.7094.