References
  -  B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic
    compounds (Cl-VOCs) in environment — sources, potential
    human health impacts, and current remediation technologies,
    Environ. Int., 71 (2014) 118–138. 
-  S.M. Cordova-Rosa, R.I. Dams, E.V. Cordova-Rosa,
    M.R. Radetski, A.X.R. Corrêa, C.M. Radetski, Remediation
    of phenol-contaminated soil by a bacterial consortium and
    Acinetobacter calcoaceticus isolated from an industrial wastewater
    treatment plant, J. Hazard. Mater., 164 (2009) 61–66. 
-  K. Ikehata, M.G. El-Din, S.A. Snyder, Ozonation and advanced
    oxidation treatment of emerging organic pollutants in water
    and wastewater, Ozone Sci. Eng., 30 (2008) 21–26. 
-  D.W. Sundstrom, B.A. Weir, H.E. Klei, Destruction of aromatic
    pollutants by UV light catalyzed oxidation with hydrogen
    peroxide, Environ. Prog., 8 (1989) 6–11. 
-  L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee,
    K.E. Taylor, N. Biswas, A short review of techniques for phenol
    removal from wastewater, Curr. Pollut. Rep., 2 (2016) 157–167. 
-  G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies
    for the removal of phenol from fluid streams: a short review of
    recent developments, J. Hazard. Mater., 160 (2008) 265–288. 
-  S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A.
    Najafi, E. Mofarrah, Phenol removal from industrial wastewaters:
    a short review, Desal. Water Treat., 53 (2015) 2215–2234. 
-  C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez,
    Methodologies for the extraction of phenolic compounds from
    environmental samples: new approaches, Molecules, 14 (2009)
    298–320. 
-  S.A. Boyd, G. Sheng, B.J. Teppen, C.T. Johnston, Mechanisms for
    the adsorption of substituted nitrobenzenes by smectite clays,
    Environ. Sci. Technol., 35 (2001) 4227–4234. 
-  Z. Li, P.H. Chang, J.S. Jean, W.T. Jiang, C.J. Wang, Interaction
    between tetracycline and smectite in aqueous solution,
    J. Colloid Interface Sci., 341 (2010) 311–319. 
-  A. de Mello Ferreira Guimarães, V.S.T. Ciminelli,
    W.L. Vasconcelos, Smectite organofunctionalized with thiol
    groups for adsorption of heavy metal ions, Appl. Clay Sci.,
    42 (2009) 410–414. 
-  C. Rey, C. Combes, C. Drouet, H. Sfihi, A. Barroug, Physicochemical
    properties of nanocrystalline apatites: implications
    for biominerals and biomaterials, Mater. Sci. Eng. C, 27 (2007)
    198–205. 
-  E. Picard, H. Gauthier, J.F. Gérard, E. Espuche, Influence of the
    intercalated cations on the surface energy of montmorillonites:
    consequences for the morphology and gas barrier properties
    of polyethylene/montmorillonites nanocomposites, J. Colloid
    Interface Sci., 307 (2007) 364–376. 
-  C. Queffélec, M. Petit, P. Janvier, D.A. Knight, B. Bujoli, Surface
    modification using phosphonic acids and esters, Chem. Rev.,
    112 (2012) 3777–3807. 
-  D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova,
    P. Capkova, J. Simonik, Polymer/clay nanocomposites based on
    MMT/ODA intercalates, Compos. Interfaces, 9 (2002) 529–540. 
-  S.F.A. Shattar, N.A. Zakaria, K.Y. Foo, Feasibility of
    montmorillonite-assisted adsorption process for the effective
    treatment of organo-pesticides, Desal. Water Treat., 57 (2016)
    13645–13677. 
-  V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological
    interactions of graphene-family nanomaterials: An interdisciplinary
    review, Chem. Res. Toxicol., 25 (2012) 15–34. 
-  B.F. Sels, D.E. De Vos, P.A. Jacobs, Hydrotalcite-like anionic
    clays in catalytic organic reactions, Catal. Rev. Sci. Eng.,
    43 (2001) 443–488. 
-  A. Dümig, W. Häusler, M. Steffens, I. Kögel-Knabner, Clay
    fractions from a soil chronosequence after glacier retreat
    reveal the initial evolution of organo-mineral associations,
    Geochim. Cosmochim. Acta, 85 (2012) 1–18. 
-  J.A. Cecilia, C. García-Sancho, E. Vilarrasa-García, J. Jiménez-Jiménez, E. Rodriguez-Castellón, Synthesis, characterization,
    uses and applications of porous clays heterostructures: a
    review, Chem. Rec., 18 (2018) 1085–1104. 
-  S.A. Hadigheh, R.J. Gravina, S.T. Smith, Effect of acid attack
    on FRP-to-concrete bonded interfaces, Constr. Build. Mater.,
    152 (2017) 285–303. 
-  P. Komadel, J. Madejová, Acid Activation of Clay Minerals,
    2nd ed., Institute of Inorganic Chemistry, Slovak Academy
    of Sciences, Bratislava, Slovakia, 2013. doi: 10.1016/B978-0-08-098258-8.00013-4 
-  P. Komadel, Acid activated clays: materials in continuous
    demand, Appl. Clay Sci., 131 (2016) 84–99. 
-  F. Hussin, M.K. Aroua, W.M.A.W. Daud, Textural characteristics,
    surface chemistry and activation of bleaching earth:
    a review, Chem. Eng. J., 170 (2011) 90–106. 
-  F.R. Valenzuela Díaz, P. de Souza Santos, Studies on the acid
    activation of Brazilian smectitic clays, Quim. Nova, 24 (2001)
    345–353. 
-  A. Gil, L.M. Gandía, M.A. Vicente, Recent advances in the
    synthesis and catalytic applications of pillared clays, Catal. Rev.
    Sci. Eng., 42 (2000) 145–212. 
-  H. Zhao, C.H. Zhou, L.M. Wu, J.Y. Lou, N. Li, H.M. Yang,
    D.S. Tong, W.H. Yu, Catalytic dehydration of glycerol to
    acrolein over sulfuric acid-activated montmorillonite catalysts,
    Appl. Clay Sci., 74 (2013) 154–162. 
-  C. Breen, R. Watson, J. Madejová, P. Komadel, Z. Klapyta,
    Acid-activated organoclays: preparation, characterization
    and catalytic activity of acid-treated tetraalkyl ammonium exchanged
    smectites, Langmuir, 13 (1997) 6473–6479. 
-  R. Mokaya, W. Jones, Pillared clays and pillared acid-activated
    clays: a comparative-study of physical, acidic, and catalytic
    properties, J. Catal., 153 (1995) 76–85. 
-  M. Lenarda, L. Storaro, A. Talon, E. Moretti, P. Riello, Solid
    acid catalysts from clays: preparation of mesoporous catalysts
    by chemical activation of metakaolin under acid conditions,
    J. Colloid Interface Sci., 311 (2007) 537–543. 
-  P. Komadel, J. Madejová, Chapter 7.1 Acid Activation of Clay
    Minerals, Developments in Clay Science, Vol. 1, Institute of
    Inorganic Chemistry, Slovak Academy of Sciences, SK-845
    36 Bratislava, Slovakia, 2006, pp. 263–287. doi: 10.1016/S1572-4352(05)01008-1 
-  Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Polymer engineering
    based on reversible covalent chemistry: a promising innovative
    pathway towards new materials and new functionalities,
    Prog. Polym. Sci., 80 (2018) 39–93. 
-  M. Shamzhy, M. Opanasenko, P. Concepción, A. Martínez,
    New trends in tailoring active sites in zeolite-based catalysts,
    Chem. Soc. Rev., 48 (2019) 1095–1149. 
-  R. Raj, Fundamental research in structural ceramics for service
    near 2,000°C, J. Am. Ceram. Soc., 76 (1993) 2147–2174. 
-  H. Su, W. Zhou, Mechanism of accelerated dissolution of mineral
    crystals by cavitation erosion, Acta Geochim., 39 (2020) 11–42. 
-  A. Mandal, B.B. Dey, S.K. Das, Thermodynamics, kinetics, and
    isotherms for phenol removal from wastewater using red mud,
    Water Pract. Technol., 15 (2020) 705–722. 
-  N. Bar, A. Mandal, S.K. Das, A Machine Learning Technique
    for the Study of Adsorption of Phenol Using Solid Waste,
    S. Mukhopadhyay, S. Sarkar, J.K. Mandal, S. Roy, Eds., AI to
    Improve e-Governance and Eminence of Life. Studies in Big
    Data, Vol. 130, Springer, Singapore, 2023. 
    doi: 10.1007/978-981-99-4677-8_7 
-  D. Aran, A. Maul, J.F. Masfaraud, A spectrophotometric
    measurement of soil cation exchange capacity based on
    cobaltihexamine chloride absorbance, C.R. Geosci., 340 (2008)
    865–871. 
-  H. Moussout, H. Ahlafi, M. Aazza, H. Maghat, Critical of linear
    and non-linear equations of pseudo-first-order and pseudosecond-
    order kinetic models, Karbala Int. J. Mod. Sci., 4 (2018)
    244–254. 
-  Y.S. Ho, G. McKay, Modèle de pseudo-second-order pour les
    processus de sorption, Processus Biochimie., 34 (1999) 451–465. 
-  M. Aazza, H. Ahlafi, H. Moussout, H. Maghat, Adsorption
    of metha-nitrophenol onto alumina and HDTMA modified
    alumina: kinetic, isotherm and mechanism investigations,
    J. Mol. Liq., 268 (2018) 587–597. 
-  M.S. Barrios, L.V.F. González, M.A.V. Rodríguez, J.M.M. Pozas,
    Acid activation of a palygorskite with HCl: development of
    physico-chemical, textural and surface properties, Appl. Clay
    Sci., 10 (1995) 247–258. 
-  S. Saagari, D. Anusha, L. Priyanka, N. Sailaja, Data warehousing,
    data mining, OLAP and OLTP technologies are indispensable
    elements to support decision-making process in industrial
    world, Int. J. Innovation Technol. Explor. Eng., 5 (2015) 1–7. 
-  J.T. Kloprogge, E. Mahmutagic, R.L. Frost, Mid-infrared
    and infrared emission spectroscopy of Cu-exchanged
    montmorillonite, J. Colloid Interface Sci., 296 (2006) 640–646. 
-  J. Madejová, FTIR techniques in clay mineral studies,
    Vib. Spectrosc., 31 (2003) 1–10. 
-  W. Trabelsi, A. Tlili, Phosphoric acid purification through
    different raw and activated clay materials (Southern Tunisia),
    J. Afr. Earth Sci., 129 (2017) 647–658. 
-  H. Ouallal, M. Azrour, M. Messaoudi, H. Moussout,
    L. Messaoudi, N. Tijani, Incorporation effect of olive pomace on
    the properties of tubular membranes, J. Environ. Chem. Eng.,
  8 (2020) 103668, doi: 10.1016/j.jece.2020.103668. 
-  D. Ovadyahu, S. Yariv, I. Lapides, Mechanochemical
    adsorption of phenol by tot swelling clay minerals I. Thermo-
    IR-spectroscopy and X-ray study, J. Therm. Anal., 51 (1998)
    415–430. 
-  S. Saltzman, S. Yariv, Infrared study of the sorption of phenol
    and p-nitrophenol by montmorillonite, Soil Sci. Soc. Am. J.,
    39 (1975) 474–479. 
-  Y. Bulut, H. Aydin, A kinetics and thermodynamics study
    of methylene blue adsorption on wheat shells, Desalination,
    194 (2006) 259–267. 
-  A.K. Jain, Suhas, A. Bhatnagar, Methylphenols removal
    from water by low-cost adsorbents, J. Colloid Interface Sci.,
    251 (2002) 39–45. 
-  B.K. Singh, N.S. Rawat, Comparative sorption equilibrium
    studies of toxic phenols on flyash and impregnated flyash,
    J. Chem. Technol. Biotechnol., 61 (1994) 307–317. 
-  B.K. Singh, P.S. Nayak, Sorption equilibrium studies of toxic
    nitro-substituted phenols on fly ash, Adsorpt. Sci. Technol.,
    22 (2004) 295–310. 
-  B.H. Hameed, Equilibrium and kinetics studies of
    2,4,6-trichlorophenol adsorption onto activated clay, Colloids
    Surf., A, 307 (2007) 45–52. 
-  R. Rostamian, M. Najafi, A.A. Rafati, Synthesis and
    characterization of thiol-functionalized silica nano hollow
    sphere as a novel adsorbent for removal of poisonous heavy
    metal ions from water: kinetics, isotherms and error analysis,
    Chem. Eng. J., 171 (2011) 1004–1011. 
-  B. Özkaya, Adsorption and desorption of phenol on activated
    carbon and a comparison of isotherm models, J. Hazard. Mater.,
    129 (2006) 158–163. 
-  E. Bazrafshan, P. Amirian, A.H. Mahvi, A. Ansari-Moghaddam,
    Application of adsorption process for phenolic compounds
    removal from aqueous environments: a systematic review,
    Global Nest J., 18 (2016) 146–163. 
-  E. Eren, B. Afsin, Removal of basic dye using raw and acid
    activated bentonite samples, J. Hazard. Mater., 166 (2009)
    830–835. 
-  I. Poljanšek, M. Krajnc, Characterization of phenolformaldehyde
    prepolymer resins by in line FTIR spectroscopy,
    Acta Chim. Slov., 52 (2005) 238–244. 
-  R. Liu, R.L. Frost, W.N. Martens, Near infrared and mid infrared
    investigations of adsorbed phenol on HDTMAB organoclays,
    Mater. Chem. Phys., 113 (2009) 707–713. 
-  H. Ouallal, Y. Dehmani, H. Moussout, L. Messaoudi, M. Azrour,
    Kinetic, isotherm and mechanism investigations of the removal
    of phenols from water by raw and calcined clays, Heliyon,
  5 (2019) e01616, doi: 10.1016/j.heliyon.2019.e01616. 
-  A. Mandal, P. Mukhopadhyay, S.K. Das, Adsorptive removal of
    phenol from wastewater using guava tree bark, Environ. Sci.
    Pollut. Res., 27 (2020) 23937–23949. 
-  A. Mandal, P. Mukhopadhyay, S.K. Das, Efficiency analysis of
    rice husk as adsorbent for removal of phenol from wastewater,
    J. Environ. Anal. Toxicol., 9 (2019) 605–612. 
-  A. Mandal, P. Mukhopadhyay, S.K. Das, The study of
    adsorption efficiency of rice husk ash for removal of phenol
    from wastewater with low initial phenol concentration,
  SN Appl. Sci., 1 (2019) 192, doi: 10.1007/s42452-019-0203-3. 
-  A. Das, N. Bar, S.K. Das, Adsorptive removal of Pb(II) ion on
    Arachis hypogaea’s shell: batch experiments, statistical, and GA
    modeling, Int. J. Environ. Sci. Technol., 20 (2022) 537–550. 
-  S. Bhattacharya, N. Bar, B. Rajbansi, S.K. Das, Synthesis of
	  chitosan-nTiO2 nanocomposite, application in adsorptive
    removal of Cu(II)—adsorption and desorption study,
    mechanism, scale-up design, statistical, and genetic algorithm
    modeling, Appl. Organomet. Chem., 37 (2023) e7094,
    doi: 10.1002/aoc.7094.