References

  1. N.D. Tzoupanos, A.I. Zouboulis, Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents, In: Proceedings of the 6th ASME/WSEAS International Conference on heat transfer, thermal engineering and environment (HTE’08), Rhodes, Greece, 2008, pp. 20–22.
  2. R.B. Moruzzi, M.A.P. Reali, The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model, Bioprocess Biosyst Eng., 37 (2014) 2445–2452.
  3. R.L. Droste, Theory and practice of water and wastewater treatment, John Wiley & Sons, Inc., Hoboken, NJ, 1997.
  4. G. Apostol, R. Kouachi, I. Constantinescu, Optimization of coagulation-flocculation process with aluminum sulfate based on response surface methodology, U.P.B. Sci. Bull., Series B, 73 (2011) 77–84.
  5. J. Bratby, Coagulation and flocculation in water and wastewater treatment, 2nd. ed., IWA Publishing, London, UK, 2006.
  6. R.B. Moruzzi, S.C. Oliveira, Mathematical modeling and analysis of the flocculation process in chambers in series, Bioprocess Biosyst Eng., 36 (2013) 357–363.
  7. Y. Argaman, W.J. Kaufman, Turbulence and flocculation, J. Sanit. Eng. Div., ASCE, 96(SA2) (1970) 223–241.
  8. T.R. Camp, P.C. Stein, Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng., 30 (1943) 219–237.
  9. L. Di Bernardo, A.D.B. Dantas, Métodos e técnicas de tratamento de água [Methods and techniques in water treatment], 2nd ed., RiMa, São Carlos, SP, Brazil, 2005.
  10. W.P. He, J. Nan, H.Y. Li, S.N. Li, Characteristic analysis on temporal evolution of floc size and structure in low-shear flow, Water Res., 46 (2012) 509–520.
  11. P. Jarvis, B. Jefferson, J. Gregory, S.A. Parsons, A review of floc strength and breakage, Water Res., 39 (2005) 3121–3137.
  12. A.L. de Oliveira, P. Moreno, P.A.G. da Silva, M.D. Julio, R.B. Moruzzi, Effects of the fractal structure and size distribution of flocs on the removal of particulate matter, Desal. Wat. Treat., 57 (2016) 16721–16732.
  13. M. Yao, J. Nan, T. Chen, Effect of particle size distribution on turbidity under various water quality levels during flocculation processes, Desalination, 354 (2014) 116–124.
  14. J. Gregory, Monitoring particle aggregation processes, Adv. Colloid Interface Sci., 147–148 (2009) 109–123.
  15. J.R. Bratby, Interpreting laboratory results for the design of rapid mixing and flocculation systems, Journal of American Water Works Association, 73 (1981) 318–325.
  16. J.R. Bratby, M.W. Miller, G.R. Marais, Design of flocculation systems from batch test data, Water S.A., 3 (1977) 173–182.
  17. S.A. Brito, Influência da velocidade de sedimentação na determinação dos coeficientes de agregação e ruptura durante a floculação [Influence of sedimentation velocity to determine the aggregation and breakage coefficients during flocculation]. Thesis (Masters in Hydraulics and Sanitation), São Carlos, São Carlos School of Engineering, University of São Paulo (Escola de Engenharia de São Carlos, Universidade de São Paulo), 1998, p. 170.
  18. V.L. Pádua, Metodologia para determinação dos gradientes de velocidade médios em unidades de floculação de mistura complete com câmaras em série e escoamento contínuo a partir de reatores estáticos [Methodology to determine mean velocity gradients in complete mixture flocculation units with series chambers and continuous flow from static reactors]. Thesis (Masters in Hydraulics and Sanitation) São Carlos School of Engineering, University of São Paulo (Escola de Engenharia de São Carlos, Universidade de São Paulo), Dissertação (Mestrado) – Escola de Engenharia de São Carlos, Universidade de São Paulo 1994, p. 165.
  19. M. Libânio, Avaliação da floculação em reatores estáticos e de escoamento contínuo com gradientes de velocidade constant variável. [Flocculation evaluation in static and continuous flow reactors with variable constant velocity gradients]. Thesis (Hydraulics and Sanitation) São Carlos School of Engineering, University of São Paulo (Escola de Engenharia de São Carlos, Universidade de São Paulo). Tese (Doutorado) – Escola de Engenharia de São Carlos, Universidade de São Paulo, 1995, p. 136.
  20. A. Constantinides, N. Mostoufi, Numerical methods for chemical engineers with MATLAB applications, Prentice Hall PTR, Upper Saddle River, N.J., 1999.
  21. L. Di Bernardo, A. Botari, L.P. Sabogal-Paz, Uso de modelação matemática para projetos de câmeras mecanizadas de floculação em série em estações de tratamento de água, Eng. Sanit. Ambient., 10 (2005) 82–90.
  22. L.M. Savioli, Determination of Gradients of Velocity in Flocculation Units Arranged in Series Seeking to Meet the Criterion of the Lowest Total Time, Dissertation (Master in Civil and Environmental Engineering), Bauru School of Engineering, Universidade Estadual Paulista “Julio de Mesquita Filho”, 2014.