References

  1. F.J. O’Brien, Biomaterials and scaffold for tissue engineering, Mater. Today, 14 (2011) 88–95.
  2. P.X. Ma, Scaffolds for tissue fabrication, Mater. Today, 7 (2004), 30–40.
  3. M. Grolik, Tissue Engineering – New Tool in Tissue Reconstruction [in Polish], Scientific Papers of the Society PhD, Jagiellonian University Science, 2011, pp. 33–40.
  4. J. Gołębiewski, E. Gibas, R. Malinowski, Selected biodegradable polymers – synthesis, properties, applications [in Polish], Polimery, 53 (2008) 799–807.
  5. S. Lakshmi, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32 (2007) 762–798.
  6. P.A. Gunatillake, R. Adhikari, Biodegradable synthetic polymers for tissue engineering, Eur. Cells Mater., 5 (2003) 1–16.
  7. B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers, J. Polym. Sci. Polym. Phys., 49 (2011) 832–864.
  8. Z. Pan, J. Ding, Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine, Interface Focus, 2 (2012) 366–377.
  9. A. Gadomska, I. Warych, P. Ruśkowski, L. Synoradzki, Manufacturing of polylactide nanospheres [in Polish], Przem. Chem., 93 (2014) 1311–1314.
  10. A. Gadomska, J. Mierzejewska, P. Ruśkowski, L. Synoradzki, Manufacturing of paracetamol-containing polylactide spheres [in Polish], Przem. Chem., 10 (2015) 1676–1678.
  11. A. Kruk, A. Gadomska-Gajadhur, P. Ruśkowski, A. Przybysz, V. Bijak, L. Synoradzki, Optimization of the preparation of the neomycin containing polylactide spheres by mathematical methods of design of experiments [in Polish], Przem. Chem., 95 (2016) 766–769.
  12. A.P. Gupta, V. Kumar, New emerging trends in synthetic biodegradable polymers polylactide: a critique, Eur. Polym. J., 43 (2007) 4053–4074.
  13. B. Nowak, J. Pająk, Biodegradation of polylactide (PLA) [in Polish], Arch. Gosp. Odpad. Ochr. Środ., 12 (2010) 1–10.
  14. A. Kruk, A. Gadomska-Gajadhur, P. Ruśkowski, Applications of Bioresorbable Scaffolds for Tissue Engineering [in Polish], M. Olszówka, K. Maciąg (Eds.), Wydawnictwo Tygiel, Lublin, 2015, pp. 91–102.
  15. A. Gadomska-Gajadhur, A. Kruk, P. Ruśkowski, L. Synoradzki, Effect of Porogen on the Morphology of Polylactide Scaffolds [in Polish], R. Steller, D. Żuchowska, TEMPO s.c., Wrocław, 2015, pp. 294–297.
  16. A. Kruk, A. Gadomska-Gajadhur, P. Ruśkowski, Effect of Pore Precursors on the Morphology of the Semi-Permeable Membranes for Cell Cultures [in Polish], M. Olszówka, K. Maciąg (Eds.), Wydawnictwo Tygiel, Lublin, 2016, in print.
  17. M. Płończak, J. Czubak, A. Chwojnowski, B. Kupikowska-Stobba, Culture of human autologus chondrocytes on polysulfonic membranes – preliminary Studies, Biocyb. Biomed. Eng., 32 (2012) 63–68.
  18. A. Chwojnowski, A. Kruk, A. Gadomska-Gajdhur, P. Ruśkowski, C. Wojciechowski, E. Łukowska, L. Synoradzki, J. Dulnik, P. Denis, P. Sajkiewicz, The method of preparing wide-pore polyester scaffold [in Polish], Patent Application, P-414353.
  19. A. Kruk, A. Gadomska-Gajadhur, P. Ruśkowski, L. Synoradzki, A. Chwojnowski, The Method for Preparing Three-Dimensional Bilayer Polylactide Scaffold for Culture of Skin Equivalents [in Polish], Patent Application, P-413603.
  20. A. Chwojnowski, The Semi-Permeable Polysulfone Membranes [in Polish], Warsaw: The Team of Printing and Publishing of IBIB PAS, Warszawa, 2011.
  21. S. Lan Levengood, M. Zhang, Chitosan-based scaffolds for bone tissue engineering, J. Mater. Chem. B, 2 (2014) 3161–3184.
  22. Y. Wen, F. Lian, Y. Ren, H. Guan, Enhanced electrochemical properties of a novel polyvinyl formal membrane supporting gel polymer electrolyte by Al2O3 modification, J. Polym. Sci. Pol. Phys., 52 (2014) 572–577.