References

  1. C.S. Jang, S.K. Chen, Y.M. Kuo, Applying indicator-based geostatistical approaches to determine potential zones of groundwater recharge based on borehole data, Catena, 101 (2013) 178–187.
  2. H. Arslan, Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: the case of Bafra plain, Turkey, Agric. Water Manage., 113 (2012) 57–63.
  3. K. Voudouris, Assessing Groundwater Pollution Risk in Sarigkiol Basin, NW Greece, M. Gallo, M. Herrari, Eds., River Pollution Research Progress, Nova Science Publishers Inc., Chapter 7, 2009, pp. 265–281.
  4. A. Taheri Tizro, K. Voudouris, S. Vahedi, Spatial variation of groundwater quality parameters: a case study from a semiarid region of Iran, Int. Bull. Water Resour. Dev., 1 (2014) 1–14.
  5. M. Ehteshami, A. Sefidkar Langeroudi, S. Tavassoli, Simulation of nitrate contamination in groundwater caused by livestock industry (case study: Rey), J. Environ. Prot., 4 (2013) 91–97.
  6. S.H. Khazaei, N. Khorasani, K.H. Talebi, M. Ehteshami, Investigation of the groundwater contamination due to the use of diazinon insecticide in Mazandaran province (case study: Mahmoud Abad city), J. Nat. Environ., 63 (2010) 23–32.
  7. R. Taghizadeh-Mehrjardi, Mapping the spatial variability of groundwater quality in Urmia, Iran, J. Mater. Environ. Sci., 5 (2014) 530–539.
  8. R. Webster, M.A. Oliver, Geostatistics for Environmental Scientists, John Wiley & Sons, Brisbane, Australia, 2001.
  9. H.F. Yeh, C.H. Lee, K.C. Hsu, P.H. Chang, GIS for the assessment of the groundwater recharge potential zone, Environ. Geol., 58 (2009) 185–195.
  10. T.N. Sheikhy, M.F. Ramli, A. Zaharin Aris, W.N. Azmin Sulaiman, K. Fakharian, Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol plain, Iran, Water, 6 (2014) 68–85.
  11. C. Piccini, A. Marchetti, R. Farina, R. Francaviglia, Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds, Int. J. Environ. Res., 6 (2012) 853–862.
  12. R. Caridad-Cancela, E.V. Vàzquez, S.R. Vieira, C.A. Abreu, A.P. Gonzàlez, Assessing the spatial uncertainty of mapping trace elements in cultivated fields, Commun. Soil Sci. Plant Anal., 36 (2005) 253–274.
  13. Environmental Systems Research Institute (ESRI), Using ArcGIS Geostatistical Analyst, ESRI, Redlands, CA, USA, 2003.
  14. T.P. Robinson, G. Metternicht, Testing the performance of spatial interpolation techniques for mapping soil properties, Comput. Electron. Agric., 50 (2006) 97–108.
  15. L.H. Stefanoni, R.P. Hernandez, Mapping the spatial variability of plant diversity in a tropical forest: comparison of spatial interpolation methods, Environ. Monit. Assess., 117 (2006) 307–334.
  16. C. Xu, L. Gong, T. Jiang, D. Chen, V.P. Singh, Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment, J. Hydrol., 327 (2006) 81–93.
  17. P. Goovaerts, Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. Hydrol., 228 (2000) 113–129.
  18. R. Taghizadeh-Mehrjardi, Z.M. Jahromi, S.H. Mahmodi, A. Heidari, Spatial distribution of groundwater quality with geostatistics (case study: Yazd-Ardakan plain), World Appl. Sci. J., 4 (2008) 9–17.
  19. A. Kumar, S. Maroju, A. Bhat, Application of ArcGIS geostatistical analyst for interpolating environmental data from observations, Environ. Prog. Sustain. Energy, 26 (2007) 220–225.
  20. J.Y. He, X. Jia, ArcGIS Geostatistical Analyst Application in Assessment of MTBE Contamination, Proc. ESRI User Conference, Fremont, CA, USA, 2004. Available at: http://gis.esri.com/library/userconf/proc04/docs/pap1628.pdf
  21. K.S. Woo, J.H. Jo, P.K. Basu, J.S. Ahn, Stress intensity factor by p-adaptive refinement based on ordinary Kriging interpolation, Finite Elem. Anal. Des., 45 (2009) 227–234.
  22. H. Baalousha, Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: a case study from Heretaunga plains, New Zealand, Agric. Water Manage., 97 (2010) 240–246.
  23. M.A. Dawoud, Design of national groundwater quality monitoring network in Egypt, Environ. Monit. Assess., 96 (2004) 99–118.
  24. M.S. Yeh, Y.P. Lin, L.C. Chang, Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms, Environ. Geol., 50 (2006) 101–121.
  25. F. Nazari-zade, F. Arshadiyan, K. Zand-Vakily, Study of Spatial Variability of Groundwater Quality of Balarood Plain in Khuzestan Province, The First Congress of Optimized Exploitation from Water Source of Karoon and Zayanderood Plain, Vol. 1, Shahrekord University, Iran, 2006, pp. 1236–1240.
  26. S. Ahmed, Groundwater Monitoring Network Design: Application of Geostatistics with a Few Case Studies from a Granitic Aquifer in a Semi-arid Region, M.M. Sherif, V.P. Singh, M. Al-Rashed, Eds., Groundwater Hydrology, Vol. 2, Balkema, Tokyo, Japan, 2002, pp. 37–57.
  27. E. Barca, G. Passarella, Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation, Environ. Monit. Assess., 137 (2008) 261–273.
  28. B. Farjad, Z.M.S. Helmi, A.M. Thamer, S. Pirasteh, N. Wijesekara, Groundwater intrinsic vulnerability and risk mapping, Water Manage., 165 (2012) 441–450.
  29. I.S. Babiker, M.A. Hiyama, T. Kato, A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, Sci. Total Environ., 345 (2005) 127–140.
  30. J. Vias, B. Andreo, N. Ravbar, H. Hotzl, Mapping the vulnerability of groundwater to the contamination of four carbonate aquifers in Europe, J. Environ. Manage., 91 (2010) 1500–1510.
  31. M. Ehteshami, R.C. Peralta, H. Eisele, H. Deer, T. Tindall, Assessing pesticide contamination to ground water: a rapid approach, Ground Water, 29 (1991) 862–886.
  32. C. Delgado, J. Pacheco, A. Cabrera, E. Batllori, R. Orellana, F. Bautista, Quality of groundwater for irrigation in tropical karst environment: the case of Yucatan, Mexico, Agric. Water Manage., 97 (2010) 1423–1433.
  33. P.P. Adhikary, H. Chandrasekharan, D. Chakraborty, K. Kamble, Assessment of groundwater pollution in West Delhi, India using geostatistical approach, Environ. Monit. Assess., 167 (2010) 599–615.
  34. A. Houshmand, M. Delghandi, A. Izadi, A. Ahmad, Application of kriging and cokriging in spatial estimation of groundwater quality parameters, Afr. J. Agric. Res., 6 (2011) 3402–3408.
  35. K.S. Rawat, A.K. Mishra, V.K. Sehgal, V.K. Tripathi, Spatial variability of ground water quality in Mathura District (Uttar Pradesh, India) with geostatistical method, Int. J. Remote Sens. Appl., 2 (2012) 1–9.
  36. R. Sarukkalige, Geostatistical analysis of groundwater quality in Western Australia, IRACST Engineering Science and Technology: An International Journal (ESTIJ), 2 (2012) 790–794.
  37. Statistical Reports of Water Source in Study Area of Shiraz, Organization Shiraz Regional Water, 2009.
  38. A.R. Karimipour, G. Banitaleby, I. Karimipour, M. Ahmadi, Studying of performance of the under construction drainage system in Shiraz plain, Life Sci. J., 9 (2012).954–965.
  39. E. Bijanzadeh, M. Mokarram, R. Naderi, Applying spatial geostatistical analysis models for evaluating variability of soil properties in eastern Shiraz, Iran, Iran Agric. Res., 33 (2014) 35–46.
  40. P.J. Mouser, D.M. Rizzo, Evaluation of Geostatistics for Combined Hydrochemistry and Microbial Community Fingerprinting at a Waste Disposal Site, Proc. World Water and Environmental Resources Congress, Utah, USA, 2004, pp. 1–11.
  41. F. Lopez-Granados, M. Jurado-Exposito, S. Atenciano, A. Garcia-Ferrer, M.S. de la Orden, L. Garcia-Torres, Spatial variability of agricultural soil parameters in southern Spain, Plant Soil, 246 (2002) 97–105.
  42. E.H. Isaaks, R.M. Srivastava, An Introduction to Applied Geostatistics, Oxford University Press, New York, NY, USA, 1990, p. 592.
  43. N. Jager, Hydrogeology and Groundwater Simulation, Lewis Publishers, Chelsea, Michigan, USA, 1990.
  44. G.J. Hahn, S.S. Shapiro, Statistical Models in Engineering, Wiley & Sons, USA, 1994, p. 376. Available at: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471040657.html
  45. B. Nas, Geostatistical approach to assessment of spatial distribution of groundwater quality, Polish J. Environ. Stud., 18 (2009) 1073–1082.
  46. M. Rokbani, M. Gueddari, R. Bouhlila, Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Tunisian Sahel), Iran. J. Energy Environ., 2 (2011)133-144.
  47. Gh.R. Zehtabian, H.M. Asgari, M. Tahmoures, Assessment of spatial structure of groundwater quality variables based on the geostatistical simulation, Desert, 17 (2013) 215–224.
  48. J. Mahlknecht, J.F. Schneider, B.J. Merkel, I. Navarro de Leon, S.M. Bernasconi, Groundwater recharge in a sedimentary basin in semi-arid Mexico, Hydrogeol. J., 12 (2004) 511–530.
  49. J.D. Hem, Study and Interpretation Chemical Characteristics of Natural Water, U.S. Geological Survey, Water Supply Paper No. 2254, 1985.