References

  1. D.M. Lewis, Coloration in the next century, Rev. Prog. Color., 29 (1999) 23–28.
  2. S. Sirianuntapiboon, K. Chairattanawan, Effects of some operating parameters on the efficiency of a sequencing batch reactor system for treatment of textile wastewater containing acid dyes, Desal. Wat. Treat., 50 (2012) 206–219.
  3. S. Sirianuntapiboon, O. Sadahiro, P. Salee, Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes, J. Environ. Manage., 85 (2007) 162–170.
  4. W.A. Al-Amrani, P.E. Lim, C.E. Seng, W.S.W. Ngah, Factors affecting bio-decolorization of azo dyes and COD removal in anoxic–aerobic REACT operated sequencing batch reactor, J. Taiwan Inst. Chem. Eng., 45 (2014) 609–616.
  5. V.V. Dawkar, U.U. Jadhav, M.U. Jadhav, A.N. Kagalkar, S.P. Govindwar, Decolorization and detoxification of sulphonated azo dye Red HE7B by Bacillus sp. VUS, World J. Microbiol. Biotechnol., 26 (2010) 909–916.
  6. A. Khalid, M. Arshad, D.E. Crowley, Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains, Appl. Microbiol. Biotechnol., 78 (2008) 361–369.
  7. S. Karthikeyan, A. Titus, A. Gnanamani, A.B. Mandal, G. Sekaran, Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes, Desalination, 281 (2011) 438–445.
  8. O. Türgaya, G. Ersöz, S. Atalaya, J. Forss, U. Welander, The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation, Sep. Purif. Technol., 79 (2011) 26–33.
  9. P.A. Carneiro, G.A. Umbuzeiro, D.P. Oliveira, M.V.B. Zanoni, Assessment of water contamination caused by a mutagenic textile effluent/dye house effluent bearing disperses dyes, J. Hazard. Mater., 174 (2010) 694–699.
  10. A. Srinivasan, T. Viraraghavan, Decolorization of dye wastewaters by biosorbents: a review, J. Environ. Manage., 91 (2010) 1915–1929.
  11. S. Sirianuntapiboon, S. Maneewon, Effects of bio-sludge concentration and dilution rate on the efficiency of sequencing batch reactor (SBR) system for textile wastewater treatment, Environmental Asia, 5 (2012) 36–52.
  12. S. Sirianuntapiboon, J. Sansak, Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes, J. Hazard. Mater., 159 (2008) 404–411.
  13. B.E.L. Baêta, H.J. Luna, A.L. Sanson, S.Q. Silva, S.F. Aquino, Degradation of a model azo dye in submerged anaerobic membrane bioreactor (SAMBR) operated with powdered activated carbon (PAC), J. Environ. Manage., 128 (2013) 462–470.
  14. T. Panswad, W. Luangdilok, Decolourization of reactive dye with different molecular structures under different environmental conditions, Water Res., 34 (2000) 4177–4184.
  15. C. O’Neill, A. Lopez, S. Esteves, F.R. Hawkes, D.L. Hawkes, S. Wilcox, Azo dye degradation in a anaerobic-aerobic treatment system operating on simulated textile effluent, Int. J. Curr. Microbiol. Appl. Sci., 53 (2000) 249–254.
  16. I.K. Kapdan, R. Oztekin, The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic–aerobic SBR system, J. Hazard. Mater., 136 (2006) 896–901.
  17. Society of Dyers and Colurists, Color Index, V.8., American Association of Textile Chemists and Colorists, 3rd ed., Supplement to V.1-4, 6 and 7, Bradford, England, 1987.
  18. APHA, AWWA, WPCF, Standard methods for the examination of water and wastewater, 20th ed., American Public Health Association, American Water Works Association, Washington, D.C., 1998.
  19. T. Hill, P. Lewicki, Statistics: Methods and Applications, 1st ed., StatSoft, Inc., Australia, 2005.
  20. SAS Institute, The SAS System for Windows, Version 6.12, Cary, NC, 1996.
  21. G. Tchabanolous, F.L. Burton, Metcalf & Eddy, Wastewater Engineering: Treatment Disposal and Reuse, 4th ed., McGraw-Hill, New York, 2004.
  22. N. Dafale, S. Watea, S. Meshramb, T. Nandya, Kinetic study approach of remazol black-B use for the development of two-stage anoxic–oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium, J. Hazard. Mater., 159 (2008) 319–328.
  23. S.V. Mohan, P.S. Babu, K. Naresh, G. Velvizhi, D. Madamwar, Acid azo dye remediation in anoxic–aerobic–anoxic microenvironment under periodic discontinuous batch operation: bio-electro kinetics and microbial inventory, Bioresour. Technol., 119 (2012) 362–372.
  24. M. Solís, A. Solís, H. Inés Pérezb, N. Manjarrezb, M. Floresa, Microbial decolouration of azo dyes: a review, Process Biochem., 47 (2012) 1723–1748.
  25. K. Kumar, G.S. Kumar, M.G. Dastidar, T.R. Sreekrishnan, Effect of mixed liquor volatile suspended solids (MLVSS) and hydraulic retention time (HRT) on the performance of activated sludge process during the biotreatment of real textile wastewater, Water Resour. Ind., 5 (2014) 1–8.
  26. J.L.C. Ladu, X.W. Lu, Effects of hydraulic retention time, temperature, and effluent recycling on efficiency of anaerobic filter in treating rural domestic wastewater, Water Sci. Eng., 7 (2014) 168–182.
  27. J.O. Kim, K.H. Cho, M. Ligaray, H.M. Jang, S. Kang, Y.M. Kim, Monitoring influential environmental conditions affecting communities of denitrifying and nitrifying bacteria in a combined anoxic-oxic activated sludge system, Int. Biodeterior. Biodegrad., 100 (2015) 1–6.
  28. X. Zhang, H. Zhang, C. Ye, M. Wei, J. Du, Effect of COD/N ratio on nitrogen removal and microbial communities of CANON process in membrane bioreactors, Bioresour. Technol., 189 (2015) 302–308.
  29. L. Huang, S. Cheng, G. Chen, Bioelectrochemical systems for efficient recalcitrant wastes treatment, J. Chem. Technol. Biotechnol., 86 (2010) 481–491.
  30. Z. Huang, P.B. Gedalanga, P. Asvapathanagul, B.H. Olson, Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor, Water Res., 44 (2010) 4351–4358.
  31. E.H. Koupaie, M.R. Alavi Moghaddam, S.H. Hashemi, Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye Acid Red 18: comparison of using two types of packing media, Bioresour. Technol., 127 (2013) 415–421.
  32. H.A. Modi, G. Rajput, C. Ambasana, Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent, Bioresour. Technol., 101 (2010) 6580–6583.
  33. X. Wang, X. Cheng, D. Sun, Interaction in anaerobic biodecolorization of mixed azo dyes of Acid Red 1 and Reactive Black 5 under batch and continuous conditions, Colloids Surf., A, 379 (2011) 127–135.
  34. N. Supaka, K. Juntongjin, S. Damronglerd, M.L. Delia, P. Strehaiano, Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system, Chem. Eng. J., 99 (2004) 169–176.
  35. Y. Chen, B. Li, L. Ye, Y. Peng, The combined effects of COD/N ratio and nitrate recycling ratio on nitrogen and phosphorus removal in anaerobic/anoxic/aerobic (A2/O) – biological aerated filter (BAF) systems, Biochem. Eng. J., 93 (2015) 235–242.