References

  1. A. Janotti, C.G.V.D. Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys., 72 (2009) 126–501.
  2. S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazard. Mater., 112 (2004) 269–278.
  3. J. Goldberger, D.J. Sirbuly, M. Law, P. Yang, ZnO nanowire transistors, J. Phys. Chem. B, 109 (2005) 9–14.
  4. Y.P. Li, Y. Bando, D. Golberg, ZnO nanoneedles with tip surface perturbations: excellent field emitters, Appl. Phys. Lett., 84 (2004) 3603–3605.
  5. J. Xu, Q. Pan, Y. Shun, Z. Tian, Grain size control and gas sensing properties of ZnO gas sensor, Sensor Actuat. B-Chem., 66 (2000) 277–279.
  6. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chem. Phys. Lett., 358 (2002) 83–86.
  7. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes, Chem. Mater., 13 (2001) 4395–4398.
  8. Q.C. Li, V. Kumar, Y. Li, H.T. Zhang, T.J. Marks, R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater., 17 (2005) 1001–1006.
  9. J. Yu, X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres, Environ. Sci. Technol., 42 (2008) 4902–4907.
  10. Y.Z. Zhang, Y.P. Liu, L.H. Wu, H. Li, L.Z. Han, B.C. Wang, E.Q. Xie, Effect of annealing atmosphere on the photoluminescence of ZnO nanospheres, Appl. Surf. Sci., 255 (2009) 4801–4805.
  11. N. Daneshvar, D.Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A, 162 (2004) 317–322.
  12. L.K. Adams, D.Y. Lyon, P.J.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water. Res., 40 (2006) 3527–3532.
  13. S. Chakrabarti, B. Chaudhuri, S. Bhattacharjee, P. Das, B.K. Dutta, Degradation mechanism and kinetic model for photocatalytic oxidation of PVC–ZnO composite film in presence of a sensitizing dye and UV radiation, J. Hazard. Mater., 154 (2008) 230–236.
  14. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energ., 27 (2002) 991–1022.
  15. H.F. Lin, S.C. Liao, S.W. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photochem. Photobiol. A, 174 (2005) 82–87.
  16. M.G. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles, Mater. Lett., 65 (2011) 1797–1800.
  17. N. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, H. Ahmad, Low operating temperature of oxygen gas sensor based on undoped and Cr-doped ZnO films, Appl. Surf. Sci., 256 (2010) 3468–3471.
  18. I. Djerdj, G. Garnweitner, D. Arčon, M. Pregelj, Z. Jagličić, M. Niederberger, Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study, J. Mater. Chem., 43 (2008) 5208–5217.
  19. Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Appl. Phys. Lett., 83 (2003) 2253–2255.
  20. M.L. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett., 363 (2002) 123–128.
  21. J.-H. Lee, K.-H. Ko, B.-O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, J. Cryst. Growth, 247 (2003) 119–125.
  22. J.-J. Wu, S.-C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition, Adv. Mater., 14 (2002) 215–218.
  23. J. Zhang, D.L. Sun, J.L. Yin, H.L. Su, C.S. Liao, C.H. Yan, Control of ZnO morphology via a simple solution route, Chem. Mater., 14 (2002) 4172–4177.
  24. K.H. Tam, C.K. Cheung, Y.H. Leung. A.B. Djurisić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, Defects in ZnO nanorods prepared by a hydrothermal method, J. Phys. Chem. B, 110 (2006) 20865–20871.
  25. B. Xiang, P. Wang, X. Zhang, S.A. Dayeh, D.P.R. Aplin, C. Soci, D. Yu, D. Wang, Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition, Nano. Lett., 7 (2007) 323–328.
  26. K.D. Bhatte, D.N. Sawant, R.A. Watile, B.M. Bhanage, A rapid, one step microwave assisted synthesis of nanosize zinc oxide, Mater. Lett., 69 (2012) 66–68.
  27. F.K. Liu, P.W. Huang, Y.C. Chang, C.J. Ko, F.H. Ko, T.C. Chu, Formation of silver nanorods by microwave heating in the presence of gold seeds, J. Cryst. Growth, 273 (2005) 439–445.
  28. Y. Liu, J.H. Yang, Q.F. Guan, L.L. Yang, H.L. Liu, Y.J. Zhang, Y.X. Wang, D.D. Wang, J.H. Lang, Y.T. Yang, L.H. Fei, M.B. Wei, Effect of annealing temperature on structure, magnetic properties and optical characteristics in Zn0.97Cr0.03O nanoparticles, Appl. Surf. Sci., 256 (2010) 3559–3562.
  29. A. Meng, J. Xing, Z.J. Li, Q. Li, Cr-doped ZnO NPs: Synthesis, characterization, adsorption property and recycle, ACS Appl. Mater. Interfaces, 7 (2015) 27449–27457.
  30. Y.B. Li, Y. Li, M.Y. Zhu, T. Yang, J. Huang, H.M. Jin, Y.M. Hu, Structure and magnetic properties of Cr-doped ZnO nanoparticles prepared under high magnetic field, Solid State Commun., 150 (2010) 751–754.
  31. J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J. Huang, L. Zhang, Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+, Appl. Catal. B: Environ., 62 (2006) 329–335.
  32. W.J. Ong, S.Y. Voon, L.L. Tan, B.T. Goh, S.T. Yong, Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites toward degradation of reactive black 5, Ind. Eng. Chem. Res., 53 (2014) 17333–17344.