References

  1. Z. Dong, D.B. Senn, R.E. Moran, J.P. Shine, Prioritizing environmental risk of prescription pharmaceuticals, Regul. Toxicol. Pharm., 65 (2013) 60–67.
  2. K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of human pharmaceuticals, Aquat. Toxicol., 76 (2006) 122–159.
  3. T. Kosjek, S. Perko, M. Zupanc, M. Zanoški Hren, T. Landeka Dragičević, D. Žigon, B. Kompare, E. Heath, Environmental occurrence, fate and transformation of benzodiazepines in water treatment, Water Res.,
    46 (2012) 355–368.
  4. D.R. Baker, B. Kasprzyk-Hordern, Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: New developments, Sci. Total Environ., 454–455 (2013) 442–456.
  5. G.W. Dawson, S.G. Jue, R.N. Brogden, Alprazolam: A review of its pharmacodynamic properties and efficacy in the treatment of anxiety and depression, Drugs, 27 (1984) 132–147.
  6. S. Maitra, B. Saha, C.R. Santra, A. Mukherjee, S. Goswami, P.K. Chanda, P. Karmakar, Alprazolam induced conformational change in hemoglobin, Int. J. Biol. Macromol., 41 (2007) 23–29.
  7. V. Calisto, M.R.M. Domingues, V.I. Esteves, Photodegradation of psychiatric pharmaceuticals in aquatic environments – kinetics and photodegradation products, Water Res., 45 (2011) 6097–6106.
  8. B. Subedi, K. Kannan, Occurrence and fate of select psychoactive pharmaceuticals and antihypertensives in two wastewater treatment plants in new york state, USA, Sci. Total Environ., 514 (2015) 273–280.
  9. N. Tomić, M. Grujić-Brojčin, N. Finčur, B. Abramović, B. Simović, J. Krstić, B. Matović, M. Šćepanović, Photocatalytic degradation of alprazolam in water suspension of brookite type TiO2 nanopowders prepared using hydrothermal route, Mater. Chem. Phys., 163 (2015) 518–528.
  10. O.A.H. Jones, N. Voulvoulis, J.N. Lester, Human pharmaceuticals in wastewater treatment processes, Crit. Rev. Environ. Sci. Technol., 35 (2005) 401–427.
  11. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal of antibiotics from water and wastewater: Progress and challenges, Sci. Total Environ., 532 (2015) 112–126.
  12. L.E. Brus, Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys., 80 (1984) 4403– 4409.
  13. S. Chen, W. Liu, Characterization and antiwear ability of noncoated zns nanoparticles and ddp-coated zns nanoparticles, Mater. Res. Bull., 36 (2001) 137–143.
  14. N. Hebalkar, A. Lobo, S.R. Sainkar, S.D. Pradhan, W. Vogel, J. Urban, S.K. Kulkarni, Properties of zinc sulphide nanoparticles stabilized in silica, J. Mater. Sci., 36 (2001) 4377–4384.
  15. C. Sombuthawee, S.B. Bonsall, F.A. Hummel, Phase equilibria in the systems zns-mns, zns-cuins2, and mns-cuins2, J. Solid State Chem., 25 (1978) 391–399.
  16. X. Zhou, T. Shi, H. Zhou, Hydrothermal preparation of znoreduced graphene oxide hybrid with high performance in photocatalytic degradation, Appl. Surf. Sci., 258 (2012) 6204–6211.
  17. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C., 112 (2008) 8192–8195.
  18. M. Sookhakian, Y.M. Amin, W.J. Basirun, Hierarchically ordered macro-mesoporous zns microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue, Appl. Surf. Sci., 283 (2013) 668–677.
  19. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, Synthesis, structural, and optical properties of type-ii zno–zns core–shell nanostructure, J. Lumin., 145 (2014) 244–252.
  20. A. Fakhri, S. Adami, Adsorption and thermodynamic study of cephalosporins antibiotics from aqueous solution onto mgo nanoparticles, J. Taiwan Inst. Chem. Eng., 45 (2014) 1001–1006.
  21. E. Martınez-Flores, J. Negrete, G. Torres Villaseñor, Structure and properties of Zn–al–cu alloy reinforced with alumina particles, Mater. Des., 24 (2003) 281–286.
  22. A. Fakhri, Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: Optimization using response surface methodology, Process Saf. Environ., 93 (2015) 1–8.
  23. A. Fakhri, Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014) 340–347.
  24. M.J. Tempkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physicochim. URS., 12 (1940) 217–222.
  25. Y.S. Ho, Citation review of lagergren kinetic rate equation on adsorption reactions, Scientometrics, 59 (2004) 171–177.
  26. R. Djeribi, O. Hamdaoui, Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick, Desalination, 225 (2008) 95–112.
  27. S. Basha, Z.V.P. Murthy, B. Jha, Sorption of Hg(II) onto carica papaya: Experimental studies and design of batch sorber, Chem. Eng. J., 147 (2009) 226–234.
  28. A. Chatterjee, S. Schiewer, Multi-resistance kinetic models for biosorption of cd by raw and immobilized citrus peels in batch and packed-bed columns, Chem. Eng. J., 244 (2014) 105–116.
  29. T. Fan, Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou, Z. Tan, X. Wang, Biosorption of cadmium(II), zinc(II) and lead(II) by penicillium simplicissimum: Isotherms, kinetics and thermodynamics, J. Hazard. Mater., 160 (2008) 655–661.
  30. H. Lalhruaitluanga, K. Jayaram, M.N.V. Prasad, K.K. Kumar, Lead(II) adsorption from aqueous solutions by raw and activated charcoals of melocanna baccifera roxburgh (bamboo) — a comparative study, J. Hazard. Mater., 175 (2010) 311–318.
  31. X. Zhang, X. Wang, Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite, PLoS ONE, 10 (2015) e0117077.