References

  1. M. Vepsalainen, H. Kivisaari, M. Pulliainen, A. Oikari, M. Sillanpaa, Removal of toxic pollutants from pulp mill effluents by electrocoagulation, Sep. Purif. Technol., 81 (2011) 141–150.
  2. O. Ashrafi, L. Yerushalmi, F. Haghighat, Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry, Environ. Sci. Pollut. Res., 20 (2013) 1858–1869.
  3. A. Pizzichini, C. Russo, C.D. Meo, Purification of pulp and paper wastewater, with membrane technology, for water reuse in a closed loop, Desalination, 178 (2005) 351–359.
  4. M. Manttari, M. Kuosa, J. Kallas, M. Nystrom, Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry, J. Membr. Sci., 309 (2008) 112–119.
  5. A.Y. Bagastyo, J. Keller, Y. Poussade, D.J. Batstone, Characterisation and removal of recalcitrants in reverse osmosis concentrates from water reclamation plants, Water Res., 45 (2011) 2415–2427.
  6. A.P. Gonzalez, R. Ibanez, P. Gomez, A.M. Urtiaga, I. Ortiz, J.A. Irabien, Nanofiltration separation of polyvalent and monovalent anions in desalination brines, J. Membr. Sci., 473 (2015) 16–27.
  7. P. Westerhoff, H. Moon, D. Minakata, J. Crittenden, Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities, Water Res., 43 (2009) 3992–3998.
  8. T. Zhou, T.T. Lim, S.S. Chin, A.G. Fane, Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment, Chem. Eng. J., 166 (2011) 932–939.
  9. E. Dialynas, D. Mantzavinos, E. Diamadopoulos, Advanced treatment of the reverse osmosis concentrate produced during reclamation of municipal wastewater, Water Res., 42 (2008) 4603–4608.
  10. B.V. Bruggen, A. Koninckx, C. Vandecasteele, Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration, Water Res., 38 (2004) 1347–1353.
  11. F. Zhao, K. Xu, H. Ren, L. Ding, J. Geng, Y. Zhang, Combined effects of organic matter and calcium on biofouling of nanofiltration membranes, J. Membr. Sci., 486 (2015) 177–188.
  12. A.A. Amoudi, R.W. Lovitt, Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency, J. Membr. Sci., 303 (2007) 6–28.
  13. M. Reig, S. Casas, O. Gibert, C. Valderrama, J.L. Cortina, Integration of nanofiltration and bipolar electrodialysis for valorization of seawater desalination brines: production of drinking and waste water treatment chemicals, Desalination, 382 (2016) 13–20.
  14. N.F. Bishop, O. Nir, O. Lahav, V. Freger, Predicting the rejection of major seawater ions by spiral-wound nanofiltration membranes, Environ. Sci. Technol., 49 (2015) 8631–8638.
  15. T.Y. Liu, C.K. Li, B. Pang, B. Van der Bruggen, X.L. Wang, Fabrication of a dual-layer (CA/PVDF) hollow fiber membrane for RO concentrate treatment, Desalination, 365 (2015) 57–69.
  16. C.M. Tonko, A. Kiraly, P. Mizsey, G. Patzay, E. Csefalvay, Limitation of hardness from thermal water by means of nanofiltration, Water Sci. Technol., 67 (2013) 2025–2032.
  17. G.M. Ayoub, R.M. Zayyat, M.A. Hindi, Precipitation softening: a pretreatment process for seawater desalination, Environ. Sci. Pollut. Res., 21 (2014) 2876–2887.
  18. J. Kaewsuk, D.Y. Lee, T.S. Lee, G.T. Seo, Effect of ion composition on nanofiltration rejection for desalination pretreatment, Desal. Wat. Treat., 43 (2012) 260–266.
  19. H. Saitua, R. Gil, A.P. Padilla, Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater, Desalination, 274 (2011) 1–6.
  20. P. Dydo, M. Turek, J. Ciba, Scaling analysis of nanofiltration systems fed with saturated calcium sulfate solutions in the presence of carbonate ions, Desalination, 159 (2003) 245–251.
  21. A. Zirehpour, A. Rahimpour, M. Jahanshahi, M. Peyravi, Mixed matrix membrane application for olive oil wastewater treatment: process optimization based on Taguchi design method, J. Environ. Manage., 132 (2014) 113–120.
  22. S. Pourjafar, M. Jahanshahi, A. Rahimpour, Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method, Desalination, 315 (2013) 107–114.
  23. A. Salahi, T. Mohammadi, Oily wastewater treatment by ultrafiltration using Taguchi experimental design, Water Sci. Technol., 63 (2011) 1476–1484.
  24. A. Idris, A.F. Ismail, M.Y. Noordin, S.J. Shilton, Optimization of cellulose acetate hollow fiber reverse osmosis membrane production using Taguchi method, J. Membr. Sci., 205 (2002) 223–237.
  25. Z.W. Song, L.Y. Jiang, Optimization of morphology and performance of PVDF hollow fiber for direct contact membrane distillation using experimental design, Chem. Eng. Sci., 101 (2013) 130–143.
  26. R. Hepsen, Y. Kaya, Optimization of membrane fouling using experimental design: an example from dairy wastewater treatment, Ind. Eng. Chem. Res., 51 (2012) 16074–16084.
  27. J. Fang, B. Deng, Rejection and modeling of arsenate by nanofiltration: contributions of convection, diffusion and electromigration to arsenic transport, J. Membr. Sci., 453 (2014) 42–51.
  28. G. Yang, W. Xing, N. Xu, Concentration polarization in spiralwound nanofiltration membrane elements, Desalination, 154 (2003) 89–99.
  29. A.I.C. Morao, A. Szymczyk, P. Fievet, A.M.B. Alves, Modelling the separation by nanofiltration of a multi-ionic solution relevant to an industrial process, J. Membr. Sci., 322 (2008) 320–330.
  30. C.V. Gherasim, P. Mikulasek, Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration, Desalination, 343 (2014) 67–74.
  31. E.M.V. Hoek, M. Elimelech, Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes, Environ. Sci. Technol., 37 (2003) 5581–5588.
  32. G. Hagmeyer, R. Gimbel, Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination, 117 (1998) 247–256.
  33. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  34. A.I.C. Morao, A.M.B. Alves, V. Geraldes, Concentration polarization in a reverse osmosis/nanofiltration plate-andframe membrane module, J. Membr. Sci., 325 (2008) 580–591.
  35. J. Schaep, C. Vandecasteele, A.W. Mohammad, W.R. Bowen, Modelling the retention of ionic components for different nanofiltration membranes, Sep. Purif. Technol., 22–23 (2001) 169–179.
  36. W.R. Bowen, B. Cassey, P. Jones, D.L. Oatley, Modelling the performance of membrane nanofiltration—application to an industrially relevant separation, J. Membr. Sci., 242 (2004) 211–220.
  37. A. Szymczyk, C. Labbez, P. Fievet, A. Vidonne, A. Foissy, J. Pagetti, Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes, Adv. Colloid Interface Sci., 103 (2003) 77–94.
  38. C. Mazzoni, L. Bruni, S. Bandini, Nanofiltration: role of the electrolyte and pH on desal DK performances, Ind. Eng. Chem. Res., 46 (2007) 2254–2262.
  39. M.D. Afonso, Surface charge on loose nanofiltration membranes, Desalination, 191 (2006) 262–272.
  40. A.I.C. Morao, A.M.B. Alves, M.D. Afonso, Concentration of clavulanic acid broths: influence of the membrane surface charge density on NF operation, J. Membr. Sci., 281 (2006) 417–428.
  41. S. Bandini, Modelling the mechanism of charge formation in NF membranes: theory and application, J. Membr. Sci., 264 (2005) 75–86.
  42. C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Retention of mineral salts by a polyamide nanofiltration membrane, Sep. Purif. Technol., 30 (2003) 47–55.
  43. B. Tansel, J. Sager, T. Rector, J. Garland, R.F. Strayer, L. Levine, M. Roberts, M. Hummerick, J. Bauer, Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes, Sep. Purif. Technol., 51 (2006) 40–47.
  44. A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioenerg., 42 (1997) 153–160.
  45. J. Zhou, X.H. Lu, Y.R. Wang, J. Shi, Molecular dynamics study on ionic hydration, Fluid Phase Equilib., 194 (2002) 257–270.
  46. H. Binder, O. Zschornig, The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes, Chem. Phys. Lipids, 115 (2002) 39–61.
  47. A.E. Childress, M. Elimelech, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes, J. Membr. Sci., 119 (1996) 253–268.
  48. L. Bruni, S. Bandini, The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes, J. Membr. Sci., 308 (2008) 136–151.
  49. L. Bruni, S. Bandini, Studies on the role of site-binding and competitive adsorption in determining the charge of nanofiltration membranes, Desalination, 241 (2009) 315–330.
  50. S. Deon, A. Escoda, P. Fievet, A transport model considering charge adsorption inside pores to describe salts rejection by nanofiltration membranes, Chem. Eng. Sci., 66 (2011) 2823–2832.
  51. M.R. Teixeira, M.J. Rosa, M. Nystrom, The role of membrane charge on nanofiltration performance, J. Membr. Sci., 265 (2005) 160–166.
  52. A.E. Childress, M. Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics, Environ. Sci. Technol., 34 (2000) 3710–3716.
  53. J. Schaep, C. Vandecasteele, Evaluating the charge of nanofiltration membranes, J. Membr. Sci., 188 (2001) 129–136.