References

  1. H.G. Seiler, A. Sigel, H. Sigel, Handbook on Toxicity of Inorganic Compounds, Marcel-Dekker, New York, 1998.
  2. M. Mukhopadhyay, S.B. Noronha, G.K. Suraishkumar, Kinetic modeling for the bioadsorption of copper by pretreated Aspergillus niger biomass, Bioresour. Technol., 98 (2007) 1781–1787.
  3. J.W. Patterson, Industrial wastewater treatment technology, 2nd ed., Stoneham, MA: Butterworths Publishers, 1985.
  4. R. Gundogan, B. Acemioglu, M.H. Alma, Copper (II) adsorption from aqueous solution by herbaceous peat, J. Colloid Interf. Sci., 269 (2004) 303–309.
  5. P. Cloud, Paleoecological significance of the banded iron formation, Econ. Geol., 68 (1973) 1135–1143.
  6. Jr. M. Horsfall, I. Ayebaemi, A.A. Abi, Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot Sculenta Cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution, Bullet. of the Korean Chem. Soci., 25 (2004) 969–976.
  7. D.G. Lundgren, W. Dean, Biogeochemistry of iron, In: Trudinger, P.A., Swaine, D.J. (eds.), Biogeochemical Cycling of Mineral-Forming Elements, Sci. Publ. Comp., 1979, pp. 211–251.
  8. D.E. Weiss, Bacterial iron oxidation in circumneutral freshwater habitats: findings from the field and the laboratory, Geomicrobi. J., 21 (2004) 405–414.
  9. R. Katal, H. Zare, S.O. Rastegar, P. Mavaddat, G.N. Darzi, Removal of dye and chemical oxygen demand reduction from textile industrial wastewater using hybrid bioreactors, Environ. Eng. Manag. J., 13 (2014) 43–50.
  10. J.A. Rentz, J.L. Ullman, Copper and zinc removal using biogenic iron oxides, World Environ. Water Res. Congress: Crossing Boundaries, 2012.
  11. A.B. Seabra, P. Haddad, N. Duran, Biogenic synthesis of nanostructured iron compounds: applications and perspectives, IET Nanobiotechnol., 7 (2013) 90–99.
  12. H. Katerina, S. Ivo, F. Jan, N. Maryla, T. Jiri, S. Mirka, H. Hideki, T. Jun, Z. Radek, Magnetically responsive natural biogenic iron oxides for organic xenobiotics removal, Nanocon, 16–18 Oct., Brno, Czech Republic, EU, 2013.
  13. E.O. Omoregie, R.M. Couture, P.V. Cappellen, C.L. Corkhill, J.M. Charnock, D.A. Polya, D. Vaughan, K. Vanbroekhoven, J.R. Lloyd, Arsenic bioremediation by biogenic iron oxides and sulphides, Appl. Environ. Microbiol., 79 (2013) 4325– 4335.
  14. A.J. Williams, D.Y. Sumner, C.N. Alpers, K.M. Campbell, D.K. Nordstrom, Biogenic iron mineralization at Iron Mountain, Ca, with implications for detection with the mars curiosity rover, 45th Lunar and Planetary Science Conference, 2014.
  15. G.M. Ayoub, H, Kalinian, Removal of low-concentration phosphorus using a fluidized raw dolomite bed, Water Env. Res., 78 (2006) 353–361.
  16. H.L. James, P.K. Sims, Precambrian iron-formations of the world, Econ. Geol., 68 (1973) 913–914.
  17. L. St-Cyr, D. Fortin, P.G.C. Campbell, Microscopic observations of the iron plaque of a submerged aquatic plant (Vallisneria americana Michx), Aquat. Bot., 46 (1993) 155–167.
  18. D. Emerson, J.V. Weiss, J.P. Megonigal, Iron-oxidizing bacteria are associated with ferric hydraoxide precipitates (Fe-Plaque) on the roots of wetland plants, Appl. Environ. Microbiol., (1999) 2758–2761.
  19. S.A. Figueiredo, O. Matos Freitas, Adsorption kinetics of removal of yellow lanasol dyestuff using gallinaceous feathers, Environ. Eng. Manage. J., 12 (2013) 2061–2070.
  20. C.J. Igwe, U. Arukwe, N.S. Anioke, Isotherm and kinetic studies of residual oil adsorption from palm oil mill effluent (pome) using boiler fly ash, Environ. Eng. Manage. J., 12 (2013) 417–427.
  21. J.V. Weiss, Characterization of neutrophilic Fe(II) oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. Nov, Geomicrobi. J., 24 (2007) 559–570.
  22. S.C. Neubauer, G.E. Toledo-Duran, D. Emerson, Returning to their roots: iron-oxidizing bacteria enhance short-term plaque formation in the wetland-plant rhizosphere, Geomicrobiol. J., 24 (2007) 65–73.
  23. APHA, Standard Methods for the Examination of Water and Wastewater. 22rd ed., American Public Health Association, American Water Works Association, Water Environment Federation, 2012.
  24. A. Demirbas, Adsorption of lead and cadmium ions in aqueous solutions onto modified lignin from alkali glycerol delignication, J. Hazard. Mater., 109 (2004) 221–226.
  25. I. Langmuir, The Constitution and fundamental properties of solids and liquids, Part I, Solids, J. Amer. Chem. Soc., 38 (1916) 2221–2295.
  26. H.M.F. Fruindlich, Under die adsorption in Losungen, J. Phys. Chem., 57 (1906) 385–470.
  27. L. Liu, J. Liu, H. Li, H. Zhang, J. Liu, H. Zhang, Lead biosorption on sesame leaf, BioResour., 7 (2012) 3555–3572.
  28. J.A. Rentz, I.P. Turner, J.L. Ullma, Removal of phosphorus from solution using Leptothrix sp., Water Res., 43 (2009) 2029– 2035.
  29. C.A. Eligwe, N.B. Okolue, Adsorption of iron (II) by a Nigerian brown coal, Fuel, 73 (1994) 569–572.
  30. M.A. Hossain, M. Kumita, Y. Michigami, S. Mori, Kinetics of Cr(VI) adsorption on used black tea leaves, J. Chem. Eng. Japan, 38 (2005) 402–406.
  31. S. Ghorai, A.K. Sarkar, A.B. Pand, S. Pal, Effective removal of congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent, Bioresour. Technol., 144 (2013) 485–491.
  32. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1–39.
  33. M.J.D. Low, Kinetics of chemisorption of gases on solids, Chem. Rev., 60 (1960) 267–312.
  34. Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper (II) on to peat, Adsorp. Sci.Technol., 20 (2002).
  35. J.I. Drever, The geochemistry of natural waters, Prentice-Hall, New Jersey, 1997.
  36. R.A.K. Rao, S. Ikram, Sorption studies of Cu(II) on gooseberry fruit (Emblica officinalis) and its removal from electroplating wastewater, Desalination, 277 (2011) 390–398.
  37. Y.H. Chen, F.A. Li, Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts, J. Colloid Interface Sci., 347 (2010) 277–281.
  38. M.A. Zenasni, S. Benfarhi, A. Merlin, S. Molina, B. George, B. Meroufel, Adsorption of Cu(II) on maghnite from aqueous solution: Effects of pH, initial concentration, interaction time and temperature, Natural Sci., 4 (2012) 856–868.
  39. H.J. Shipley, K.E. Engates, V.A. Grover, Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion, Environ. Sci. Pollut. Res., 20 (2013) 1727–1736.
  40. N. Sezgin, M. Sahin, A. Yalcin, Y. Koseoglu, Synthesis characterization and the heavy metal removal efficiency of MFe2O4 (M=Ni, Cu) Nanoparticles, Ekoloji, 22 (2013) 89–96.
  41. K.A. Al-Saad, M.A. Amr, D.T. Hadi, R.S. Arar, M.M. AL-Sulaiti, T.A. Abdulmalik, N.M. Alsahamary, J.C. Kwak, Iron oxide nanoparticles: applicability for heavy metal removal from contaminated water, Arab J. Nucl. Sci. Appl., 45 (2012) 335–346.
  42. A.M. Farhan, A.H. Al-Dujaili, A.M. Awwad, Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves, Int. J. Ind. Chem. 4 (2013) 24.
  43. R. Khandanlou, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri, K. Kalantari, Rapid adsorption of copper(II) and lead(II) by rice straw/Fe3O4 nanocomposite: optimization, equilibrium isotherms, and adsorption kinetics study, PLoS ONE, 10(3) (2015) 45–53.
  44. J. Sun, G.L. Yu, L.L. Liu, Z.F. Li, Q.B. Kan, Q.S. Huob, Coreshell structured Fe3O4@SiO2 supported cobalt(II) or copper(II) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene, Catal. Sci. Technol., 4 (2014) 1246–1252.
  45. D.L. Sparks, Kinetics of Soil Chemical Processes, 1st ed., Academic Press, New York, USA, 1989, pp. 18–29.