References
- U. Pal, A. Sandoval, S.I. Madrid, G. Corro, V. Sharma, P. Mohanty,
Mixed titanium, silicon, and aluminum oxide nanostructures as
novel adsorbent for removal of rhodamine 6G and methylene
blue as cationic dyes from aqueous solution, Chemosphere, 163
(2016) 142–152.
- M. Das, K.G. Bhattacharyya. Use of raw and acid-treated MnO2
as catalysts for oxidation of dyes in water: a case study with
aqueous methylene blue, Chem. Eng. Commun., 202 (2015)
1375696091.
- S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali,
A.O.H. Memar, R. Shahryari-Ghoshekandi, I. Tyagi, V.K. Gupta,
Efficient removal of toxic bromothymol blue and methylene
blue from wastewater by polyvinyl alcohol, J. Mol. Liq., 218
(2016) 191–197.
- A.H.A. Dabwan, N. Yuki, N.A.M. Asri, H. Katsumata, T.
Suzuki, S. Kaneco, Removal of methylene blue, rhodamine B
and ammonium ion from aqueous solution by adsorption onto
sintering porous materials prepared from coconut husk waste,
Open J. Inorg. Non-metal. Mater., 5 (2015) 21–30.
- M.J. Andritsos, Con: Methylene Blue should not be used
routinely for vasoplegia perioperatively, J. Cardiothor. Vasc.
Anesth., 25 (2011) 739–743.
- T.S. Ahmed, Methylene blue toxicity following infusion to localize
parathyroid adenoma, J. Laryngol. Otol., 120 (2006) 138–140.
- S.K. Sharma, 11. Hen Feather: A Remarkable Adsorbent for Dye
Removal, John Wiley & Sons, Inc., 2015.
- J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han,
Q. Xu, Adsorption of methylene blue by a high-efficiency
adsorbent (polydopamine microspheres): kinetics, isotherm,
thermodynamics and mechanism analysis, Chem. Eng. J., 259
(2015) 53–61.
- A. Mittal, M. Teotia, R.K. Soni, J. Mittal, Applications of egg
shell and egg shell membrane as adsorbents: a review, J. Mol.
Liq., 223 (2016) 376–387.
- J. Jimenez-Villarin, A. Serra-Clusellas, C. Martínez, A. Conesa, J.
Garcia-Montaño, E. Moyano, Liquid chromatography coupled
to tandem and high resolution mass spectrometry for the
characterisation of ofloxacin transformation products after
titanium dioxide photocatalysis, J. Chromatogr. A., 1443 (2016)
201–210.
- K.R. Reddy, M. Hassan, V.G. Gomes, Hybrid nanostructures
based on titanium dioxide for enhanced photocatalysis, Appl.
Catal., A, 489 (2015) 1–16.
- L. Li, J. Yan, T. Wang, Z.J. Zhao, J. Zhang, J. Gong, N. Guan,
Sub-10 nm rutile titanium dioxide nanoparticles for efficient
visible-light-driven photocatalytic hydrogen production, Nat.
Commun., 6 (2015) 5881.
- P. Fernández-Ibáñez, M.I. Polo-López, S. Malato, S. Wadhwa,
J.W.J. Hamilton, P.S.M. Dunlop, R.D. Sa, E. Magee, K.O. Shea,
D.D. Dionysiou, Solar photocatalytic disinfection of water
using titanium dioxide graphene composites, Chem. Eng. J., 261
(2015) 36–44.
- R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, C. Li,
Achieving overall water splitting using titanium dioxide-based
photocatalysts of different phases, Energy Environ. Sci., 8 (2015)
2377–2382.
- A.N. Wang, Y. Teng, X.F. Hu, L.H. Wu, Y.J. Huang, Y.M. Luo,
P. Christie, Diphenylarsinic acid contaminated soil remediation
by titanium dioxide (P25) photocatalysis: degradation pathway,
optimization of operating parameters and effects of soil
properties, Sci. Total Environ., 541 (2016) 348.
- Y. Meng, Y. Wang, Q. Han, N. Xue, Y. Sun, B. Gao, Q. Li,
Trihalomethane (THM) formation from synergic disinfection of
biologically treated municipal wastewater: effect of ultraviolet
(UV) irradiation and titanium dioxide photocatalysis on
dissolve organic matter fractions, Chem. Eng. J., 303 (2016)
252–260.
- D. Dolat, S. Mozia, R.J. Wróbel, D. Moszyński, B. Ohtani, N.
Guskos, A.W. Morawski, Nitrogen-doped, metal-modified
rutile titanium dioxide as photocatalysts for water remediation,
Appl. Catal., B, 162 (2015) 310–318.
- R. Sadowski, M. Strus, M. Buchalska, P.B. Heczko, W. Macyk,
Visible light induced photocatalytic inactivation of bacteria
by modified titanium dioxide films on organic polymers,
Photochem. Photobiol. Sci., 14 (2015) 514.
- B. Chládková, E. Evgenidou, L. Kvítek, A. Panáček, R. Zbořil,
P. Kovář, D. Lambropoulou, Adsorption and photocatalysis of
nanocrystalline TiO2 particles for Reactive Red 195 removal:
effect of humic acids, anions and scavengers, Environ. Sci.
Pollut. Res., 22 (2015) 16514–16524.
- M.C. Wang, H.J. Lin, T.S. Yang, Characteristics and optical
properties of iron ion (Fe3+)-doped titanium oxide thin films
prepared by a sol–gel spin coating, J. Alloys Comp., 473 (2009)
394–400.
- Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped
TiO2 nanopowders with remarkable visible light photocatalytic
activity, Mater. Lett., 65 (2011) 2051–2054.
- H. Huang, H. Huang, Z. Lu, H. Peng, X. Ye, D.Y.C. Leung,
Enhanced degradation of gaseous benzene under vacuum
ultraviolet (VUV) irradiation over TiO2 modified by transition
metals, Chem. Eng. J., 259 (2015) 534–541.
- M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann,
Environmental applications of semiconductor photocatalysis,
Chem. Rev., 95 (1995) 69–96.
- Y. Hou, X. Wang, L. Wu, A. Zhengxin Ding, X. Fu, Efficient
decomposition of benzene over a β-Ga2O3 photocatalyst under
ambient conditions, Environ. Sci. Technol., 40 (2006) 5799.
- R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of
graphene for electrochemical energy storage, Nat. Mater., 14
(2015) 271.
- F. Perreault, D.F.A. Fonseca, M. Elimelech, Environmental
applications of graphene-based nanomaterials, Chem. Soc. Rev.,
46 (2015) 5861.
- A.G. Arani, E. Haghparast, Z.K. Maraghi, S. Amir, Static stress
analysis of carbon nanotube reinforced composite (CNTRC)
cylinder under non-axisymmetric thermo-mechanical loads
and uniform electro-magnetic fields, Composites Part B., 68
(2015) 136–145.
- S.S.C.S. Sahu, A comparative study on heat transfer enhancement
of low volume concentration of Al2O3-water and CNT-water
nanofluids in laminar regime using helical screw tape inserts,
Chem. Eng. Process. Process Intensif., 88 (2014) 78–88.
- C. Chung, Y.K. Kim, D. Shin, S.R. Ryoo, B.H. Hong, D.H. Min.
Biomedical applications of graphene and graphene oxide,
Accounts Chem. Res., 46 (2013) 2211.
- V. Štengl, D. Popelková, P. Vláčil. TiO2–graphene nanocomposite
as high performance photocatalysts, J. Phys. Chem. C., 115
(2011) 25209–25218.
- M. Naushad, A. Mittal, M. Rathore, V. Gupta, Ion-exchange
kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions
over a composite cation exchanger, Desal. Wat. Treat., 54 (2015)
2883–2890.
- A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin
nanocomposite: synthesis and its application for the biosorption
of Cr(VI) ions from aqueous solution, Desal. Wat. Treat., 57
(2016) 15133–15145.
- H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, A
facile one-step synthesis of TiO2/graphene composites for
photodegradation of methyl orange, Nano Res., 4 (2011) 274–283.
- Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, TiO2-graphene
nanocomposites for gas-phase photocatalytic degradation of
volatile aromatic pollutant: is TiO2-graphene truly different
from other TiO2-carbon composite materials? ACS Nano., 4
(2010) 7303–7314.
- W. Fan, Q. Lai, Q. Zhang, Y. Wang, Nanocomposites of TiO2
and reduced graphene oxide as efficient photocatalysts for
hydrogen evolution, J. Phys. Chem. C., 115 (2011) 10694–10701.
- J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap
TiO2 nanoparticles wrapped by graphene. Adv. Mater., 24 (2012)
1084.
- J. Zhong, J. Wang, L. Tao, M. Gong, L. Zhimin, Y. Chen,
Photocatalytic degradation of gaseous benzene over TiO2/Sr2CeO4: kinetic model and degradation mechanisms, J. Hazard.
Mater., 139 (2007) 323.
- Y. Ding, J. Zhu, C. Yang, S. Chen, Adsorption equilibrium,
kinetics and thermodynamics of dichloroacetic acid from
aqueous solution using mesoporous carbon, Environ. Technol.,
35 (2014) 1962.
- Y. Ding, J. Zhu, D. Ji, Y. Cao, X. Ling, W. Chen. Enhancing
adsorption efficiency of dichloroacetic acid onto mesoporous
carbons: procedure optimization, mechanism and
characterization, J. Colloid Interface Sci., 452 (2015) 134–140.
- K.S. Walton, R.Q. Snurr, Applicability of the BET method
for determining surface areas of microporous metal-organic
frameworks, J. Am. Chem. Soc., 129 (2007) 8552.
- C.H. Cho, D.K. Kim, D.H. Kim, Photocatalytic activity
of monodispersed spherical TiO2 particles with different
crystallization routes, J. Am. Ceram. Soc., 86 (2010)
1138–1145.
- Y. Liao, X. Wang, Y. Ma, J. Li, T. Wen, L. Jia, Z. Zhong, L.
Wang, D. Zhang, New mechanistic insight of low temperature
crystallization of anodic TiO2 nanotube array in water, Cryst.
Growth Des., 16 (2016) 1786–1791.
- L. Velasco, J. Parra, C. Ania, Phenol adsorption and photooxidation
on porous carbon/titania composites, Adsorpt. Sci.
Technol., 28 (2010) 727–738.
- W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Improvement of the
visible-light photocatalytic performance of TiO2 by carbon
mesostructures, Chemistry, 19 (2013) 566.
- B. Kramer, Electronic structure and optical properties of
amorphous germanium and silicon, Phys. Status Solidi, 47
(1971) 501–510.
- X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin, Graphene/TiO2
nanocomposites: synthesis, characterization and application
in hydrogen evolution from water photocatalytic splitting, J.
Mater. Chem., 20 (2010) 2801–2806.
- W.K. Jo, Y. Won, I. Hwang, R.J. Tayade, Enhanced photocatalytic
degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites, Ind. Eng. Chem. Res., 53 (2014) 3455–3461.
- Y. Liu, C. Xie, J. Li, T. Zou, D. Zeng, New insights into the
relationship between photocatalytic activity and photocurrent
of TiO2/WO3 nanocomposite, Appl. Catal., A, 433–434 (2012)
81–87.