References

  1. N.L. Le, S.P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustain. Mater. Technol., 7 (2016) 1–28.
  2. B. Hofs, J. Ogier, D. Vries, E.F. Beerendonk, E.R. Cornelissen, Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Sep. Purif. Technol., 79 (2011) 365–374.
  3. J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut., 158 (2010) 2335–2349.
  4. Y. Dong, J. Zhou, B. Lin, Y. Wang, S. Wang, L. Miao, Y. Lang, X. Liu, G. Meng, Reaction-sintered porous mineral-based mullite ceramic membrane supports made from recycled materials, J. Hazard. Mater., 172 (2009) 180–186.
  5. S. Jana, M.K. Purkait, K. Mohanty, Preparation and characterization of low-cost ceramic microfiltration membranes for the removal of chromate from aqueous solutions, Appl. Clay Sci., 47 (2010) 317–324.
  6. B.K. Nandi, A. Moparthi, R. Uppaluri, M.K. Purkait, Treatment of oily waste water using low-cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models, Chem. Eng. Res. Des., 88 (2010) 881–892.
  7. P. Mittal, S. Jana, K. Mohanty, Synthesis of low-cost hydrophilic ceramic-polymeric composite membrane for treatment of oily wastewater, Desalination, 282 (2011) 54–62.
  8. P. Monash, G. Pugazhenthi, Development of ceramic supports derived from low-cost raw materials for membrane applications and its optimization based on sintering temperature, Int. J. Appl. Ceram. Technol., 8 (2011) 227–238.
  9. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Fabrication and properties of low cost ceramic microfiltration membranes for separation of oil and bacteria from its solution, J. Membr. Sci., 379 (2011) 154–163.
  10. D. Vasanth, R. Uppaluri, G. Pugazhenthi, Influence of sintering temperature on the properties of porous ceramic support prepared by uniaxial dry compaction method using low-cost raw materials for membrane applications, Sep. Sci. Technol., 46 (2011) 1241–1249.
  11. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Performance of low cost ceramic microfiltration membranes for the treatment of oilin- water emulsions, Sep. Sci. Technol., 48 (2013) 849–858.
  12. S. Emani, R. Uppaluri, M.K. Purkait, Cross flow microfiltration of oil-water emulsions using kaolin based low cost ceramic membranes, Desalination, 341 (2014) 61–71.
  13. P.B. Belibi, M.M.G. Nguemtchouin, M. Rivallin, J.N. Nsami, J. Sieliechi, S. Cerneaux, M.B. Ngassoum, M. Cretin, Microfiltration ceramic membranes from local Cameroonian clay applicable to water treatment, Ceram. Int., 41 (2015) 2752–2759.
  14. J.K. Kang, C.G. Lee, J.A. Park, S.B. Kim, N.C. Choi, S.J. Park, Adhesion of bacteria to pyrophyllite clay in aqueous solution, Environ. Technol., 34 (2013) 703–710.
  15. A. Bentayeb, M. Amouric, J. Olives, A. Dekayir, A. Nadiri, XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications, Appl. Clay Sci., 22 (2003) 211–221.
  16. A. Talidi, N. Saffaj, K.E. Kacemi, S.A. Younssi, A. Albizane, A. Chakir, Processing and characterization of tubular ceramic support for microfiltration membrane prepared from pyrophyllite clay, Sci. Stud. Res.: Chem. Eng. Biotechnol. Food Ind., 12 (2011) 263–268.
  17. A. Agarwal, M. Pujari, R. Uppaluri, A. Verma, A novel method of reducing agent contacting pattern for metal ceramic composite membrane fabrication, Appl. Surf. Sci., 320 (2014) 52–59.
  18. C. Neelakandan, G. Pugazhenthi, A. Kumar, Preparation of NOx modified PMMA-EGDM composite membrane for the recovery of chromium (VI), Eur. Polym. J., 39 (2003) 2383–2391.
  19. A. Majhi, P. Monash, G. Pugazhenthi, Fabrication and characterization of γ-Al2O3-clay composite ultrafiltration membrane for the separation of electrolytes from its aqueous solution, J. Membr. Sci., 340 (2009) 181–191.
  20. A.K. Basumatary, P.P. Adhikari, A.K. Ghoshal, G. Pugazhenthi, Fabrication and performance evaluation of fauhasite zeolite composite ultrafiltration membrane by separation of trivalent ions from aqueous solution, Environ. Prog. Sustain. Energy, 35 (2016) 1047–1054.
  21. P. Monash, G. Pugazhenthi, Effect of TiO2 addition on the fabrication of ceramic membrane supports: a study on the separation of oil droplets and bovine serum albumin (BSA) from its solution, Desalination, 279 (2011) 104–114.
  22. D. Vasanth, K. Suresh, G. Pugazhenthi, Fabrication of circular shaped ceramic membrane using mixed clays by uniaxial compaction method for the treatment of oily wastewater, Int. J. Nano Biomater., 5 (2014) 75–88.
  23. R.V. Kumar, A.K. Ghoshal, G. Pugazhenthi, Elaboration of novel tubular ceramic membrane from inexpensive raw materials by extrusion method and its performance in microfiltration of synthetic oily wastewater treatment, J. Membr. Sci., 490 (2015) 92–102.
  24. J.H. Ha, J. Lee, I.H. Song, S.H. Lee, The effects of diatomite addition on the pore characteristics of a pyrophyllite support layer, Ceram. Int., 41 (2015) 9542–9548.
  25. J.H. Ha, S.Z.A. Bukhari, J. Lee, I.H. Song, S.H. Lee, The preparation and characterizations of pyrophyllite-diatomite composite support layers, J. Ceram. Soc. Jpn., 123 (2015) 1043–1050.
  26. J.H. Ha, S. Lee, S.Z.A. Bukhari, J.M. Lee, I.H. Song, The preparation and characterization of alumina-coated pyrophyllite-diatomite composite support layers, Ceram. Int., 43 (2017) 1536–1542.
  27. J.H. Kim, C.G. Lee, J.A. Park, J.K. Kang, N.C. Choi, S.B. Kim, Use of pyrophyllite clay for fluoride removal from aqueous solution, Desal. Wat. Treat., 51 (2013) 3408–3416.
  28. J.H. She, T. Ohji, S. Kanzaki, Oxidation bonding of porous silicon carbide ceramics with synergistic performance, J. Eur. Ceram. Soc., 24 (2003) 331–334.
  29. Y. Jeong, S. Lee, S. Hong, C. Park, Preparation, characterization and application of low-cost pyrophyllite-alumina composite ceramic membranes for treating low-strength domestic wastewater, J. Membr. Sci., 536 (2017) 108–115.
  30. K. Suresh, G. Pugazhenthi, Development of ceramic membranes from low-cost clays for the separation of oil-water emulsion, Desal. Wat. Treat., 57 (2016) 1927–1939.
  31. W.S. Ang, M. Elimelech, Protein (BSA) fouling of reverse osmosis membranes: implications for wastewater reclamation, J. Membr. Sci., 296 (2007) 83–92.
  32. J. Hermia, Constant pressure blocking filtration lawsapplication to power-law non-Newtonian fluids, Trans. Inst. Chem. Eng., 60 (1982) 183–187.
  33. C.C. Ho, A.L. Zydeney, A combined pore blocking and cake filtration model for protein fouling during microfiltration, J. Colloid Interface Sci., 232 (2000) 389–399.
  34. G. Bolton, D. LaCasse, R. Kuriyel, Combined models of membrane fouling: development and application to microfiltration and ultrafiltration of biological fluids, J. Membr. Sci., 277 (2006) 75–84.
  35. H. Razaei, F.Z. Ashtiani, A. Rouladitajar, Effects of operating parameters on fouling mechanism and membrane flux in crossflow microfiltration of whey, Desalination, 274 (2011) 262–271.
  36. R. Golbandi, M.A. Abdi, A.A. Babaluo, A.B. Khoshfetrat, T. Mohammadlou, Fouling study of TiO2-boehmite MF membrane in defatting of whey solution: feed concentration and pH effects, J. Membr. Sci., 448 (2013) 135–142.
  37. Y. Jafarzadeh, R. Yegani, M. Sedaghat, Preparation, characterization and fouling analysis of ZnO/polyethylene hybrid membranes for collagen separation, Chem. Eng. Res. Des., 94 (2015) 417–427.
  38. D. Wei, Y. Tao, Z. Zhang, X. Zhang, Effect of pre-ozonation on mitigation of ceramic UF membrane fouling caused by algal extracellular organic matters, Chem. Eng. J., 294 (2016) 157–166.
  39. Y. Yang, R. Chen, W. Xing, Integration of ceramic membrane microfiltration with powdered activated carbon for advanced treatment of oil-in-water emulsion, Sep. Purif. Technol., 76 (2011) 373–377.
  40. S.R.H. Abadi, M.R. Sebzari, M. Hemati, F. Rekabdar, T. Mohammadi, Ceramic membrane performance in microfiltration of oily wastewater, Desalination, 265 (2011) 222–228.
  41. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes, Desalination, 320 (2013) 86–95.
  42. J. Fang, G. Qin, W. Wei, Z. Zhao, L. Jiang, Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion, Desalination, 311 (2013) 113–126.
  43. B.K. Nandi, R. Uppaluri, M.K. Purkait, Treatment of oily waste water using low-cost ceramic membrane: flux decline mechanism and economic feasibility, Sep. Sci. Technol., 44 (2009) 2840–2869.
  44. M.Y. Wei, L.J. Leon, Y. Lee, D. Parks, L. Carroll, P. Famouri, Selective attachment of F-actin with controlled length for developing an intelligent nanodevice, J. Colloid Interface Sci., 356 (2011) 182–189.
  45. K. Hirayama, S. Akashi, M. Furuya, K. Fukuhara, Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS, Biochem. Biophys. Res. Commun., 173 (1990) 639–646.
  46. X. Ding, Y. Fan, N. Xu, A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis, J. Membr. Sci., 270 (2006) 179–186.
  47. D. Vasanth, G. Pugazhenthi, R. Uppaluri, Preparation, characterization, and performance evaluation of LTA zeolite– ceramic composite membrane by separation of BSA from aqueous solution, Sep. Sci. Technol., 52 (2017) 767–777.
  48. A.H. Nguyen, J.E. Tobiason, K.J. Howe, Fouling indices for low pressure hollow fiber membrane performance assessment, Water Res., 45 (2011) 2627–2637.
  49. D.T. Myat, M. Mergen, O. Zhao, M.B. Stewart, J.D. Orbell, S. Gray, Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane, Water Res., 46 (2012) 5151–5164.
  50. K. Kimura, K. Tanaka, Y. Watanabe, Microfiltration of different surface waters with/without coagulation: clear correlations between membrane fouling and hydrophilic biopolymers, Water Res., 49 (2014) 434–443.
  51. F. Dajnowiec, P. Banaszczyk, A. Kubiak, M. Biegaj, L. Zander, The study on oil droplet size distribution in O/W emulsions prepared by the use of the asymmetric membrane, Pol. J. Nat. Sci., 31 (2016) 665–680.
  52. J. Cui, X. Zhang, H. Liu, S. Liu, K.L. Yeung, Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water, J. Membr. Sci., 325 (2008) 420–426.
  53. M. Hlavacek, F. Bouchet, Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions, J. Membr. Sci., 82 (1993) 285–295.
  54. J.L. Soler-Cabezas, M. Torà-Grau, M.C. Vincent-Vela, J.A. Mendoza-Roca, F.J. Martínez-Francisco, Ultrafiltration of municipal wastewater: study on fouling models and fouling mechanisms, Desal. Wat. Treat., 56 (2015) 3427–3437.
  55. J.W. Son, E.H. Sim, N.C. Choi, S.B. Kim, C.Y. Park, Comparative analysis for fouling characteristics of river water, secondary effluent, and humic acid solution in ceramic membrane ultrafiltration, Sep. Sci. Technol., 52 (2017) 2199–2211.
  56. L.D. Angelis, M.M.F. de Cortalezzi, Ceramic membrane filtration of organic compounds: effect of concentration, pH, and mixtures interactions on fouling, Sep. Purif. Technol., 118 (2013) 762–775.
  57. B. Hu, K. Scott, Microfiltration of water in oil emulsions and evaluation of fouling mechanism, Chem. Eng. J., 136 (2008) 210–220.