References

  1. A.R. Ramadan, P. Kock, A. Nadim, Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I, Waste Manage. Res., 23(2) (2005) 167–170.
  2. M. Nasr, A. Tawfik, M. Suzuki, S. Ookawara, Mathematical modeling of bio-hydrogen production from starch wastewater via up-flow anaerobic staged reactor, Desal. Water Treat., 54(1) (2015) 50–58.
  3. A. Tawfik, H. El-Kamah, Treatment of fruit-juice industry wastewater in a two-stage anaerobic hybrid (AH) reactor system followed by a sequencing batch reactor (SBR), Environ. Technol., 33(4) (2012) 429–436.
  4. M. Alalm, A. Tawfik, S. Ookawara, Combined solar advanced oxidation and PAC adsorption for removal of pesticides from industrial wastewater, J. Mater. Environ. Sci., 6(3) (2015) 800– 809.
  5. A. Mostafa, A. El-Dissouky, A. Fawzy, A. Farghaly, P. Peu, P. Dabert, S.L. Roux, A. Tawfik, Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatin aceous wastewater, Bioresour. Technol., 216 (2016) 520–528.
  6. A. Farghaly, A. Tawfik, A. Danial, Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater, Environ. Sci. Pollut. Res., 23(4) (2016) 3834–3846.
  7. A. Elreedy, A. Tawfik, A. Enitan, S. Kumari, F. Bux, Pathways of 3-biofules (hydrogen, ethanol and methane) production from petrochemical industry wastewater via anaerobic packed bed baffled reactor inoculated with mixed culture bacteria, Energy Convers. Manage., 122 (2016) 119–130.
  8. J. Hashisho, M. El-Fadel, M. Al-Hindi, D. Salam, I. Alameddine, Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate, Waste Manage., 55 (2016) 249–256.
  9. S.K. Maiti, T. Hazra, A. Debsarkar, A. Dutta, Leachate characterization and identification of dominant pollutants using leachate pollution index for an uncontrolled landfill site, Global J. Environ. Sci. Manage., 2(2) (2016) 177.
  10. S. Elyasi, T. Amani, W. Dastyar, A comprehensive evaluation of parameters affecting treating high-strength compost leachate in anaerobic baffled reactor followed by electro coagulation- flotation process, Water Air Soil Pollut., 226(4) (2015) 116.
  11. S. Ismail, A. Tawfik, Treatment of hazardous landfill leachate using Fenton process followed by a combined (UASB/DHS) system, Water Sci. Technol., 73(7) (2016) 1700–1708.
  12. S. Ismail, A. Tawfik, Performance of passive aerated immobilized biomass reactor coupled with Fenton process for treatment of landfill leachate, Int. Biodeter. Biodegrad., 111 (2016) 22–30.
  13. M.G. Alalm, A. Tawfik, S. Ookawara, Degradation of four pharmaceuticals by solar photo-Fenton process: kinetics and costs estimation, J. Environ. Chem. Eng., 3(1) (2015) 46–51.
  14. M.G. Alalm, A. Tawfik, S. Ookawara, Solar photo catalytic degradation of phenol by TiO2/AC prepared by temperature impregnation method, Desal. Water Treat., 57(2) (2016) 835– 844.
  15. M.G. Alalm, S. Ookawara, D. Fukushi, A. Sato, A. Tawfik, Improved WO3 photo catalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin, J. Hazard. Mater., 302 (2016) 225–231.
  16. M.G. Alalm, A. Tawfik, S. Ookawara, Fenton and solar photo-Fenton oxidation of industrial wastewater containing pesticides, 17th International Water Technology Conference, (2) (2013) 5–7.
  17. M.G. Alalm, A. Tawfik, S. Ookawara, Enhancement of photo catalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, J. Environ. Chem. Eng., 4(2) (2016) 1929–1937.
  18. R. Bakhshoodeh, N. Alavi, A.S. Mohammadi, H. Ghanavati, Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland, Environ. Sci. Pollut. Res., 23(12) (2016) 12384–12391.
  19. E. Wojciechowska, M. Gajewska, A. Ostojski, Reliability of nitrogen removal processes in multistage treatment wetlands receiving high-strength wastewater, Ecol. Eng., 98 (2017) 365– 371.
  20. T.Y. Yeh, Removal of metals in constructed wetlands: review, practice period, hazard toxic radio act, Waste Manage., 12(2) (2008) 96–101.
  21. Y. Liang, H. Zhu, B. Yan, Q. Zhou, X. Yu, X. Cheng, Constructed wetlands for saline wastewater treatment: A review, Ecol. Eng., 98 (2016) 275–285.
  22. M. Maine, N. Sune, H. Hadad, G. Sánchez, C. Bonetto, Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance, Chemosphere, 68(6) (2007) 1105–1113.
  23. Y. Wu, N.F.Y. Tam, M.H. Wong, Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms, Marine Pollut. Bull., 57(6) (2008) 727– 734.
  24. S. Speer, P. Champagne, B. Anderson, Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate, Bioresour. Technol., 104 (2012) 119– 126.
  25. Y. Ogata, T. Ishigaki, Y. Ebie, N. Sutthasil, C. Chiemchaisri, Water reduction by constructed wetlands treating waste landfill leachate in a tropical region, Waste Manage., 44 (2015) 164– 171.
  26. X. Ju, S. Wu, X. Huang, Y. Zhang, R. Dong, How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control, Bioresour. Technol., 169 (2014) 605–613.
  27. A. Sobolewski, A review of processes responsible for metal removal in wetlands treating contaminated mine drainage, Int. J. Phytoremediation, 1(1) (1999) 19–51.
  28. A. Sheoran, V. Sheoran, Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review, Miner. Eng., 19(2) (2006) 105–116.
  29. D. Surrency, Evaluation of aquatic plants for constructed wetlands, Constructed wetlands for water quality improvement, (1993) 349–386.
  30. D. Hill, V. Payne, J. Rogers, S. Kown, Ammonia effects on the biomass production of five constructed wetland plant species, Bioresour. Technol., 62(3) (1997) 109–113.
  31. J. Xu, J. Zhang, H. Xie, C. Li, N. Bao, C. Zhang, Q. Shi, Physiological responses of Phragmites australis to wastewater with different chemical oxygen demands, Ecol. Eng., 36(10) (2010) 1341–1347.
  32. N. Meky, M. Fujii, A. Tawfik, Treatment of hyper saline hazardous landfill leachate using a baffled constructed wetland system: effect of granular packing media and vegetation, Environ. Technol., in press.
  33. M.A. Muñoz, R.M. Rosales, M. Gabarrón, A. Faz, Effects of the hydraulic retention time on pig slurry purification by constructed wetlands and stabilization ponds, Water Air Soil Pollut., 227(9) (2016) 293.
  34. T. Saeed, R. Afrin, A. Al, G. Sun, Chemosphere treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh, Chemosphere, 88(9) (2012) 1065– 1073.
  35. Y. Yan, J. Xu, Improving winter performance of constructed wetlands for wastewater treatment in Northern China: A review, Wetlands, 34(2) (2014) 243–253.
  36. J. Huang, R. Reneau, C. Hagedorn, Nitrogen removal in constructed wetlands employed to treat domestic wastewater, Water Res., 34(9) (2000) 2582–2588.
  37. S. Toet, R.S.P. Van Logtestijn, R. Kampf, M. Schreijer, J.T.A. Verhoeven, The effect of hydraulic retention time on the removal of pollutants from sewage treatment plant effluent in a surface-flow wetland system, Wetlands, 25(2) (2005) 375– 391.
  38. C. Lee, T. Fletcher, G. Sun, Nitrogen removal in constructed wetland systems, Eng. Life Sci., 9(1) (2009) 11–22.
  39. APHA, Standard Methods for the Examination of Water and Wastewater, 2012.
  40. D. Nedwell, P. Reynolds, Treatment of landfill leachate by methanogenic and sulphate-reducing digestion, Water Res., 30(1) (1996) 21–28.
  41. E. Comino, V. Riggio, M. Rosso, Mountain cheese factory wastewater treatment with the use of a hybrid constructed wetland, Ecol. Eng., 37(11) (2011) 1673–1680.
  42. P. Foladori, A. Ortigara, J. Ruaben, Influence of high organic loads during the summer period on the performance of hybrid constructed wetlands (VSSF+ HSSF) treating domestic wastewater in the Alps, Water Science and Technology, 65(5) (2012) 890–897.
  43. C. Calheiros, A. Rangel, P. Castro, Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater, Water Res., 41(8) (2007) 1790–1798.
  44. J. Herrera-Cárdenas, A. Navarro, Effects of porous media, macrophyte type and hydraulic retention time on the removal of organic load and micro pollutants in constructed wetlands, J. Environ. Sci. Health, Part A, 51(5) (2016) 380–388.
  45. J. Gao, J. Zhang, N. Ma, W. Wang, C. Ma, R. Zhang, Cadmium removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands, Ecol. Eng., 84 (2015) 443–450.
  46. R.H. Wang, Z. Yu-shan, Q. Jin-quan, M. Ying-xia, Z. Xing-yu, Influence of seawater salinity on purification efficiency of subsurface flow constructed wetland, China Water Wastewater, 5 (2009) 5.
  47. I. Vera, N. Verdejo, W. Chávez, C. Jorquera, Influence of hydraulic retention time and plant species on performance of mesocosm subsurface constructed wetlands during municipal wastewater treatment in super-arid areas, J. Environ. Sci. Health, Part A, 51(2) (2016) 105–113.
  48. E. Comino, V. Riggio, M. Rosso, Mountain cheese factory wastewater treatment with the use of a hybrid constructed wetland, Ecol. Eng., 37(11) (2011) 1673–1680.
  49. R. Gorra, M. Coci, R. Ambrosoli, H.J. Laanbroek, Effects of substratum on the diversity and stability of ammonia-oxidizing communities in a constructed wetland used for wastewater treatment, J. Appl. Microbiol., 103(5) (2007) 1442–1452.
  50. L. Yang, H.T. Chang, M.N. Lo Huang, Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation, Ecol. Eng., 18(1) (2001) 91–105.
  51. H. Brix, Macrophyte-mediated oxygen transfer in wetlands: transport mechanisms and rates, Constructed wetlands for water quality improvement, (1993) 391–398.
  52. S.F. Corsino, M. Capodici, C. Morici, M. Torregrossa, Simultaneous nitritation-denitritation for the treatment of highstrength nitrogen in hypersaline wastewater by aerobic granular sludge, Water Res., 88 (2016) 329–336.
  53. Y. Wu, N.F.Y. Tam, M.H. Wong, Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms, Marine Pollut. Bull., 57(6) (2008) 727– 734.
  54. G. Merlin, J. Pajean, T. Lissolo, Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area, Hydrobiologia., 469(1) (2002) 87–98.
  55. S. Speer, P. Champagne, B. Anderson, Pilot-scale comparison of two hybrid-passive landfill leachate treatment systems operated in a cold climate, Bioresour. Technol., 104 (2012) 119– 126.
  56. T. Jong, D.L. Parry, Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale up flow anaerobic packed bed reactor runs, Water Res., 37(14) (2003) 3379–3389.
  57. E. Stoltz, M. Greger, Influences of wetland plants on weathered acidic mine tailings, Environ. Pollut., 144(2) (2006) 689–694.
  58. P. Elliott, S. Ragusa, D. Catcheside, Growth of sulfate-reducing bacteria under acidic conditions in an up flow anaerobic bioreactor as a treatment system for acid mine drainage, Water Res., 32(12) (1998) 3724–3730.
  59. J. Vymazal, Emergent plants used in free water surface constructed wetlands: A review, Ecol. Eng., 61 (2013) 582–592.
  60. J. Vymazal, P. Krása, Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage, Water Sci. Technol., 48(5) (2003) 299–305.
  61. J. Vymazal, The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development, Water Res., 47(14) (2013) 4795– 4811.
  62. D.A.V. Eckhard, J.M. Surface, J.H. Peverly, A constructed wetland system for treatment of landfill leachate, Monroe County, New York, (1999) 205–222.
  63. C. Chagué-Goff, M.R. Rosen, Using sediment chemistry to determine the impact of treated wastewater discharge on a natural wetland in New Zealand, Environ. Geol., 40(11) (2001) 1411–1423.