Basic equations for desalination by reverse osmosis: a deduction based on the thermodynamics of irreversible processes

José A. Ibáñez-Menguala, José A. García-Gamuzb, Ramón P. Valerdi-Pérezb*

aDepartment of Physics, bDepartment of Radiology and Physical Medicine, University of Murcia, Campus de Espinardo, 30071 Murcia, Spain
Tel. +34 968 367368; Fax: +34 968 364148; email: valerdi@um.es

Received 9 April 2008; Accepted 6 October 2008

\textbf{A B S T R A C T}

The thermodynamics of irreversible processes is a useful tool for understanding and quantifying transport phenomena in dense membranes where the membrane structural parameters are not essential. Because of the existence of driving forces, the components within the solution are transported from one side of the membrane to the other by diffusion. The aim of this paper is to provide basic equations for reverse osmosis derived from a set of more general equations established for membrane transport which relates fluxes and driving forces, based on non-equilibrium thermodynamics.

Keywords: Thermodynamics of irreversible processes; Transport phenomena; Membrane; Reverse osmosis

* Corresponding author.