Effects of nitrate on the UV photolysis of H\textsubscript{2}O\textsubscript{2} for 2,4-dichlorophenol degradation in treated effluents

K.B. Ko*, J.Y. Leea, Y.H. Yoona, T.H. Moona, Y.H. Ahna, C.G. Parka, K.S. Minb, J.H. Parka

aSchool of Civil and Environmental Engineering, Yonsei University, 134 Shinchondong, Seoul, 120-749, Korea
Tel. +82 2 2123 2892; Fax: +82 2 364 5300; email: kbko@yonsei.ac.kr

bDepartment of Environmental Engineering, Kyungpook National University, 1370 Sanggyekdong, Daegu, 702-701, Korea

Received 30 July 2007; Accepted 14 September 2007

\textbf{ABSTRACT}

The major objective of this study was to delineate the effect of nitrate on the UV oxidation of 2,4-DCP by conducting a bench-scale operation at various reaction times, and initial concentrations of H\textsubscript{2}O\textsubscript{2} and NO\textsubscript{3}--; 2,4-DCP (20±5 μg/L) was oxidized in very limited amounts through direct UV photolysis, without additional oxidation by hydroxyl radicals. However, it was completely oxidized with an initial H\textsubscript{2}O\textsubscript{2} concentration of 20 mg/L at a reaction time of 1.0 min under the operating conditions described below. The practical reaction time for 80% oxidation turned out to be 2.0 min (with a high UV dose) with an initial H\textsubscript{2}O\textsubscript{2} concentration of 10 mg/L. Nitrate enhanced the 2,4-DCP oxidation by the hydroxyl radicals produced from nitrate photolysis with the relatively low initial H\textsubscript{2}O\textsubscript{2} concentrations of 0.0 to 5 mg/L, but hindered the oxidation, when an initial H\textsubscript{2}O\textsubscript{2} concentration in the reactor was less than or around about 10 mg/L. The adverse effect of nitrate on the 2,4-DCP oxidation was not observed with a relatively high initial H\textsubscript{2}O\textsubscript{2} concentration of 20 mg/L at the reaction times of 1.0 to 2.0 min. The scavenging effect of nitrate on the 2,4-DCP oxidation was generally limited with the concentration ranges tested in this study.

\textit{Keywords:} 2,4-dichlorophenol; UV oxidation; Nitrate; Nitrite; UV/H\textsubscript{2}O\textsubscript{2} process