Fouling control of a pilot scale self-forming dynamic membrane bioreactor for municipal wastewater treatment

Niantao Xue*, Junlin Xia**, Xia Huang***

*State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
e-mail: xueniantao@163.com

**State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
Tel.: +86 010 62780050; Fax: +86 010 62780050; e-mail: xiajunlin@tsinghua.edu.cn

***State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China
Tel.: +86 010 62772324; Fax: +86 010 62772324; e-mail: xhuang@tsinghua.edu.cn

Received 31 May 2009; Accepted 23 January 2010

ABSTRACT

A pilot scale self-forming dynamic membrane bioreactor (SFDMBR) was used for municipal wastewater treatment and its fouling control was investigated. Two methods, on-line bottom aeration flushing and off-line high-pressure water flushing, were applied to control the self-forming dynamic membrane (SFDM) fouling. Aeration intensity of 22 m³/(m²·h) and aeration time of 2 min were the optimized operational conditions. Fouling of SFDM could be on-line controlled by bottom aeration flushing to keep the bioreactor continuously working for about 50 days. However, the intervals of bottom aeration flushing were gradually shortened which suggested that fouling could be controlled to some extent but gel layer could not be removed effectively. High-pressure water flushing could remove cake layer and most gel layer, and the membrane flux could be almost 100% recovered. Through the convenient fouling control by combination of bottom aeration and high-pressure water flushing, the present SFDMBR has been normally operated for more than one year and the effluent was suitable for urban miscellaneous water consumption if disinfection was added.

Keywords: Membrane fouling; Pilot scale experiment; Self-forming dynamic membrane; Municipal wastewater

1. Introduction

Membrane bioreactor (MBR) technology, an activated sludge process coupled a membrane separation process, has been regarded as a promising wastewater treatment technology due to its high quality effluent, small footprint, and less sludge production. However, expensive membrane modules and reduction of permeate flux caused by membrane fouling are major hurdles to its practical application [1,2].

Membrane fouling is generally caused by precipitation of inorganic particulates, adsorption of organic matters, and microbial adhesion and growth [3]. It is known that the fouling cake formed on the membrane surface