Membrane fouling characterization and cleaning adaptation in wastewater reclamation plants: from plant to lab

Xavier Bernat*, Guillem Prats#, Benoît Lefèvre#, Oriol Gibert#,#, Joana Tobella#

*CETaqua, Water Technology Center Passeig dels Til·lers 3, 08034 Barcelona, Spain
Tel. +34 933124800; Fax: +34 933124801; email: xbernat@cteaqua.com
#Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain

Received 3 September 2010; Accepted 3 January 2011

ABSTRACT

Membrane biofouling represents an important drawback in full-scale water reclamation plants as it affects energy consumption, permeate productivity and even quality. Due to the high number of water-/membrane-/site-specific variables affecting membrane fouling and lifetime, cleaning and maintenance procedures need to be specifically designed for each application. Cleaning activities cannot directly be optimized onsite due to the necessity of ensuring a constant and safe product water flow and quality. For this reason, cleaning optimization needs to be transposed from plant to lab. In this work, a Spanish wastewater reclamation plant was selected to optimize cleaning procedures. For this, a reverse osmosis element was sampled and submitted to several cleaning protocols at lab-scale. The influence of the basic cleaning agent nature, pH and presence of additives on cleaning efficiency was studied. The optimal membrane cleaning conditions were achieved with a NaOH solution at pH 12 containing 0.03% SDS. At these conditions, permeate flux after cleaning was two fold greater than fouled membrane permeate flux. In this work, lab-scale membrane cleaning tests have shown to be a successful tool to optimize cleaning activities for full-scale plants and understand the influence of cleaning variables on membranes restoring efficiency.

Keywords: Membrane technology; Reverse osmosis; Fouling; Autopsy; Cleaning; Wastewater reclamation

1. Introduction

Water is a natural resource that needs to be preserved to ensure future human life development. Nowadays, around 600 m3 of water per capita/year are abstracted worldwide [1]. Water consumption, together with the expected population increase and climate change, will sharply increase the number of people facing water scarcity problems in a near future [2]. Alternative supply options such as desalination, groundwater recharge, water reuse and rainwater harvesting are being more and more implemented in order to decrease natural water abstractions. Water reclamation is achieved through several treatment units installed after secondary treatment, whose configuration depends on many factors such as feed water quality, product water requirements and site area availability. Membrane technologies are being more and more selected to reclaim water as they are efficient and robust technologies to meet stringent quality needs required for reuse [3,4].

Despite its high treatment efficiency, membrane operation is strongly affected by fouling, which is usually the process bottleneck in terms of energy requirements, consumption of chemicals and water production. Mechanisms and compounds involved in fouling formation need to be identified and controlled to minimize...