Depuranat project: sustainable management of wastewater in rural areas

Luisa Vera a⁎, Gilberto Martel a, Juan José Salas b, Nieves Sardón b, Regina Nogueira c, Antonio G. Brito c, Jean-Antoine Faby d, Antonio Ramón e

aWater Department, Canary Islands Institute of Technology (ITC), Playa de Pozo Izquierdo s/n 35119, Santa Lucía, Las Palmas, Spain
Tel. +34 (922) 568992, +34 928 727592; Fax +34 (922) 568913, +34 (928) 727590, email: lvera@itccanarias.org, gmartel@itccanarias.org

bDepartment of Applied Research, Center for New Water Technologies (CENTA), Avda. Américo Vespucio 5-A. Planta 2º, Módulo 10, 41092, Seville, Spain
Tel. +34 (954) 755834, +34 (954) 460251; Fax +34 (954) 755255, +34 (954) 461252; email: jjsalas@centa.org.es, nsardon@centa.org.es

cIBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4705-057 Braga, Portugal
Tel. +351 (253) 60 44 18; Fax +351 (253) 67 89 86, email: regina@deb.uminho.pt, agbrito@deb.uminho.pt

dNational Centre for Water-Related Information and Documentation, International Office for Water (IOWater), 15, rue Edouard Chamberland, 87065 Limoges Cedex, France
Tel. +33 5 55 11 47 80; Fax +33 5 55 11 47 48; email: ja.faby@oieau.fr

eManagement and Planification of Territory and Environment (GESPLAN), C/Fco. Gourié, 107, 35002 Las Palmas de Gran Canaria, Spain
Tel. +34 (928) 301 150; Fax +34 (928) 246 346; email: arojeda@dgeo.ulpgc.es

Received 23 April 2008; Accepted in revised form 29 September 2009

ABSTRACT

The Urban Wastewater Directive is aiming to implement adequate treatments of collected wastewater before 31 December 2005 in small communities with a population until 2000 equivalent inhabitant. Within the framework of the DEPURANAT project, co-financed by the European Interregional Cooperation Programme (Interreg III B Atlantic Arc), several Natural Reclamation Systems (NRS) based upon no-conventional technologies of wastewater treatment, have been studied from different points of view in rural areas: their effectiveness for producing regenerated wastewater of acceptable quality for several reuse options and vegetal biomass for different purposes, their environmental integration or their potential of implementation. Most of these treatment plants achieved high mean removal efficiencies: TSS (73–96%); BOD5 (74–94%); COD (53–90%); E. coli (2–3 log units); Enterococci (1.5–4 log units). The environmental impact of the systems was determined using an adapted life cycle assessment methodology and the economic analysis of the systems was focused on analysing the financial indicators, empirical cost functions, and the potential market for these technologies. Furthermore, maps of potential implementation of these systems and a support tool for deciding upon the installation of conventional or NRS were designed with the aim of promoting them.

Keywords: Natural reclamation systems; Rural areas wastewater; Sustainable management; Life cycle assessment; Sanitary risk; Biomass; Wastewater reuse; Market studies

⁎ Corresponding author.

Presented at the 2nd International Congress, SMALLWAT ’07, Wastewater Treatment in Small Communities, 11–15 November 2007, Seville, Spain