High rate anaerobic filter with floating supports for the treatment of effluents from small-scale agro-food industries

Rajagopal Rajinikantha,b, Rengaraj Ganesha,c, Renaud Escudiea, Indu Mehrotrab, Pradeep Kumb, Joseph V. Thanikalb, Michel Torrijosa

a INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne, F-11100, France
Tel. +33 (4) 68425185; Fax +33 (4) 68425160; email: escudie@supagro.inra.fr, torrijos@supagro.inra.fr
b Department of Civil Engineering, Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India
Tel. +91 97909 27494, +91 1332 285451; Fax +91 1332 275568; email: rrajinime@yahoo.co.in, indumfce@iitr.ernet.in,
pkumafce@iitr.ernet.in
c Department of Environmental Technology, Central Leather Research Institute, Chennai 600020, India
Tel. +91 94439 48771; email: sairganesh@yahoo.com
d Department of Civil Engineering, Kumaraguru College of Technology, Coimbatore 641006, India
Tel. +91 (422) 2669401; Fax +91 (422) 2669406; email: jthanikal@gmail.com

Received 23 April 2008; Accepted in revised form 24 July 2008

ABSTRACT

The performance of four laboratory-scale upflow anaerobic filters (UAFs) of about 10 L effective volume packed with small buoying polyethylene media was investigated for the treatment of wastewater discharged from various small-scale agro-food industries with different composition and concentrations viz. synthetically prepared low strength (~1.9 g COD/L), fruit canning (~10 g COD/L), winery (~20 g COD/L) and cheese-dairy (~30 g COD/L) wastewaters. For the low strength wastewater, HRT was the limiting parameter with a minimum of 4 h corresponding to a maximum OLR of 12 g COD/L.d. For the high concentrated substrates, OLR was the limiting parameter, which was influenced by the nature of the substrates treated and not by the concentration of the substrates. Indeed, the UAF treating winery wastewater (20 g COD/L) had reached the highest OLR of 27 g COD/L.d with 80% COD removal efficiency, while that of the other two reactors treating fruit canning and cheese-dairy wastewaters were comparatively lower (19 and 17 g COD/L.d respectively). At the end of the experiments, the total quantities of VSS inside the reactors were high (200–342 g), indicating that the low-density polyethylene support used in this study appears to be a good colonisation matrix to increase the quantity of biomass in the reactor. The packing medium had a dual role in the retention of the biomass that is entrapment of biomass within the support and filtration of the biomass in suspension to some extent. This result was confirmed by the specific biomass activity values, which were very close to that of suspended biomass. The efficiency of liquid mixing was good, even if the biomass matrix represented up to 70% of the reactor volume for the reactor fed with fruit canning wastewater.

Keywords: UAF; Anaerobic digestion; Agro-food industrial wastewaters; Packing media; Biomass activity

* Corresponding author.

Presented at the 2nd International Congress, SMALLWAT ’07, Wastewater Treatment in Small Communities, 11–15 November 2007, Seville, Spain