The daily double – Betting on desalination and ethanol

Samuel Rosenblooma*, Mario D. Carellib

aOffice of Nuclear Safety and Environmental Policy, USA
bWestinghouse Electric Company in Pittsburgh, PA, USA
Tel. +1 301-903-5749; email: s_rosenbloom@yahoo.com

1. Introduction

It is frequently stated that California is the sixth largest economy in the world. That is, if considered an independent country it would be, from an economic perspective, the sixth largest country. However, individual countries have issues other than the size of their economies. Individual countries must ensure the safety and welfare of their citizens, establish a stable currency, provide a defense against potential aggressors, etc. In this modern age, reliable public utilities, e.g. electricity and water are the hallmark of an advanced country. Those of us who live in areas with plentiful water supplies take this for granted. But it would not be particularly wise for an independent country to rely too heavily on external sources of water because in times of turmoil an external source could be cut off. From the perspective of being able to independently supply its citizens with sufficient water, one wonders how California would rank in the family of independent countries. It is tempting to say something clever about the conundrum the almighty created when he distributed the world’s natural resources, but it should suffice to say simply that some geographical areas just do not have it all.

Many industries require fresh water and the lack of this basic commodity is therefore an impediment to economic growth. Compounding the problem is that finding sufficient supplies of inexpensive, nongreenhouse gas emitting, environmentally friendly sources of energy is a vexing issue. It is vexing because energy is what makes generation of fresh water possible. Typically, in a reverse osmosis desalination plant, electricity accounts for about 44\% of the production costs. While renewable energies such as wind and photovoltaic are growing, it makes eminent sense to use them to displace less friendly sources of electricity presently being delivered to consumers.

One industry of great interest to Californians, but impeded by the lack of available water is ethanol production for motor fuel. It seems there is no way around the fact that ethanol production requires large amounts of fresh water. For each gallon of ethanol produced, multiple gallons of fresh water are consumed at an ethanol production plant. Ethanol production also requires large amounts of energy. In fact, the energy consumption required for ethanol production is the source of much of the debate around “ethanol.” Ethanol use displaces fossil fuels but it takes a lot of fossil fuel to make ethanol. State of the art ethanol plants burn about 30,000 British Thermal Units (BTUs) of natural gas and use about 1 kWhr of electricity to produce each gallon. Additionally, it takes 10,000–15,000 BTUs of natural gas to make the fertilizer that is used to grow the corn for each gallon. Although we are moving away from corn toward cellulose, we are presented with another mystery of nature...using cellulose to make ethanol has its own special energy requirements.

Ethanol and fresh water are two liquids that Californians would like to have billions of gallons more of. However, simply maintaining the status quo is challenging due to the unpredictability of drought and the increasing urban and agricultural demand for both water and imported oil.

Nuclear energy is usually not associated with both ethanol production and desalination. However, nuclear cogeneration is very well suited for both of these. Newer nuclear reactors have been designed to be safer and to provide industrial process energy. The process energy can be utilized for desalination, ethanol