Combination of an anaerobic process with O$_3$, UV and O$_3$/UV for cellulose pulp bleaching effluent treatment

Eduardo Cleto Pires*, Thiago José Momenti
Hydraulics and Sanitary Engineering Department, School of Engineering of São Carlos, University of São Paulo, São Carlos, SP, Brazil
Tel. +55 16 3373 9571; Fax: +55 16 3373 9550; email: ecpires@sc.usp.br

Received 14 July 2008; Accepted 17 December 2008

Abstract
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft pulp plant. The anaerobic reactor (horizontal anaerobic immobilized sludge bed, HAISB) was used as a pretreatment to reduce the effluent organic load before applying AOP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD$_5$/COD ratio (biodegradability indicator) occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mgO$_3$.L$^{-1}$. Applying UV radiation alone resulted in lower values: a 34% increase in the BOD$_5$/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching effluents and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.

Keywords: Advanced oxidation processes; Ozonation; UV; Bleaching effluent; Anaerobic treatment; Combined wastewater treatment; AOP

* Corresponding author.