Enhancement of membrane filtration ability by pretreatment of secondary effluent using a new photocatalytic oxidation system

Ren-Yang Hornga,b, Chih-Pin Huanga*, Min-Chao Changb, Hsin Shaob, Mathias Ernstc, Martin Jekeld

aInstitute of Environmental Engineering, National Chiao Tung University, No. 75, Po-ai St., Hsinchu, Taiwan
Tel. +886 (3) 5726463; e-mail: cphuang@mail.nctu.edu.tw
bEEL, Industrial Technology Research Institute, 321 Section 2, Kuang Fu Road, Hsinchu, Taiwan
cSiemens Water Technologies, Wallace & Tiernan GmbH, Auf der Weide 10, 89312 Guenzburg, Germany
dDepartment of Water Quality Control, Technical University of Berlin, Sekr. KF 4, Str. Des 17, Juni 135, D-10623 Berlin, Germany

Received 15 September 2008; accepted 29 March 2009

\textbf{ABSTRACT}

Secondary effluent including different kinds of foulants, e.g. extracellular polymeric substances (EPS), soluble microbial products (SMP), and humic acids was considered as a major barrier for wastewater reuse and reclamation when a membrane was applied to obtain high quality treated water. A new hybrid system of photocatalytic oxidation and non-woven membrane separation was studied for treating secondary effluent. Initially, the foulant properties, such as polysaccharide, protein, and biopolymer, etc., were examined in a batch test. The experimental results revealed that foulants in secondary effluent could be photodegraded. Then, a continuous experiment with this new hybrid system, three applied fluxes of 16.6, 33.3, and 50.0 L/m2/h (LMH), was applied to investigate the photodegradation ability and the filtration behavior. The results revealed that the concentration of foulants in permeate increased with increasing applied flux, due to the reduction of hydraulic retention time (HRT). In comparison with the system using microfiltration (MF) or ultrafiltration (UF) membrane, larger specific flux was obtained in our non-woven membrane system. In addition, a batch-stirred cell test using UF membrane was performed to compare filtration performance before and after photodegradation in secondary effluent. Such results proved that this new hybrid system was an effective treatment process for foulant removal in secondary effluent.

Keywords: Secondary effluent; Photocatalytic oxidation; EPS; Biopolymer; Non-woven membrane

* Corresponding author.

Presented at the conference on Membranes in Drinking Water Production and Wastewater Treatment, 20–22 October 2008, Toulouse, France.