Desalination and Water Treatment 9 (2009) 293–302
www.deswater.com
1944-3994/1944-3986 © 2009 Desalination Publications. All rights reserved

Vacuum membrane distillation for an integrated seawater desalination process

J.-P. Mericq, S. Laborie*, C. Cabassud

Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
CNRS, UMR5504, F-31400 Toulouse, France
email: jpmericq@insa-toulouse.fr, stephanie.laborie@insa-toulouse.fr, cabassud@insa-toulouse.fr
Received 15 September 2008; Accepted 18 September 2009

ABSTRACT

Seawater desalination by reverse osmosis (RO) is widely used for drinking water production. In order to reduce the volume of brines and to increase recovery, a new approach is proposed in the frame of the European MEDINA project. It lies on a combination of RO and Vacuum Membrane Distillation (VMD) in order to over concentrated RO retentates and to reduce their volume. Indeed, VMD can be used for concentrated salty solutions, because concentration polarization and temperature polarization might be non limiting even for quite high salt concentrations. The objective of this paper is to provide some first trends on the feasibility of using VMD for enhancing the global process recovery. The approach is firstly based on simulations for highly concentrated solutions using a VMD modeling based on Knudsen diffusion through the membrane which was improved to take into account highly concentrated waters. The model was validated by experimental results obtained with different salty solutions and with both flat-sheet and hollow fiber membranes. Simulations were then performed to estimate possible performance with brines and over-concentrated sea-water in order to choose the best operating conditions for membranes of different permeability. The influence of vacuum pressure, temperature and feed water velocity was studied. As for more diluted solutions the main sensitive operating parameters are temperature and vacuum pressure. A compromise between high permeate flux obtained in these conditions and specific energetic consumption (without taking into account energy recovery) for the separation process was also discussed. Simulations showed that high permeate flux can be expected even for highly concentrated waters. With these chosen operating conditions, experiments with natural seawaters showed a permeate flux decrease with time that may be caused by some salt crystallization on the membrane, deposit of NOMs and biofouling. However, this fouling is reversible and easily removed by a hydraulic washing. These preliminary results with highly concentrated waters show the potential interest of the use of Vacuum Membrane Distillation as an integrated process with RO. Further experiments will focus on experiments with real seawaters to study more deeply fouling and biofouling phenomena for over-concentrated solutions.

Keywords: Membrane distillation; Brine disposal; Seawater desalination; High concentrations; Integrated approach

1. Introduction

On the one hand, the lack of potable water is a serious problem in many countries and the situation gets worse everyday. On the other hand, ocean and sea represent a nearly endless water resource. So, seawater desalination becomes a more attractive solution for drinking water production. Reverse Osmosis (RO) is now the main technology used for seawater desalination. However, main drawbacks of this technology are the limited recovery and the environmental impact of rejected brines. Recovery and brine concentration are limited because increasing the brine concentration in RO would increase osmotic pressure and thus the energy consumption as

*Corresponding author.