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A B S T R AC T

Natural convection fl ow from an isothermal vertical plate with uniform heat source embedded 
in a stratifi ed medium has been discussed in this paper. The resulting momentum and energy 
equations of boundary layer approximation are then made non-similar by introducing the usual 
non-similarity transformations. Numerical solutions of these equations are obtained by an 
implicit fi nite difference method for a wide range of the stratifi cation parameter, X. The solutions 
are also obtained for different values of pertinent parameters, namely, the Prandtl number, Pr 
and the heat generation or absorption parameter, λ and are expressed in terms of the local skin-
friction and local heat transfer, which are shown as graphical form. Effect of heat generation or 
absorption on the streamlines and isotherms are also shown graphically for different values of λ.

Keywords:  Natural convection; Stratifi ed media; Heat source; Heat Transfer; Vertical plate; 
Boundary layer fl ow.

1. Introduction

Every day various free convection processes occur in 
environments with temperature stratifi cation. Yang [1] 
fi rst presented a general approach for obtaining similar-
ity solutions for a class of problems with a non-isothermal 
vertical wall surrounded by an isothermal atmosphere. 
For laminar free convection along a vertical plate, Chee-
sewright [2] obtained similarity solutions dealing with 
various types of non-uniform ambient temperature dis-
tributions by using the technique developed by Yang 
[1]. Fujii et al. [3] presented both analytical and experi-
mental results for a temperature stratifi cation in which 
the ambient temperature distribution varies with x0.7.

Numerical investigation on the natural convection fl ow 
along a vertical porous surface placed in thermally strat-
ifi ed media has recently been investigated by Saha [4] 
and natural convection fl ow from a vertical fl at plate 
in a stratifi ed medium with effect of viscous dissipa-
tion and double diffusion has been studied by Saha and 
Hossain [5]. More recently, effect of viscous dissipation 
on the natural convection boundary layer fl ow along a 
porous surface considering a temperature stratifi cation 
in which the ambient temperature distribution varies 
with x by Hossain et al. [6]. Later, Saha et al. [7] studied 
the conjugate effect of thermal and mass diffusion on the 
problem proposed in Ref. [4].

The study of radiation or heat generation/absorp-
tion effects in moving fl uids is important in view of 
several physical problems such as those dealing with 
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 chemical reactions and those concerned with dissoci-
ating fl uids [8,9]. In fact, the literature is replete with 
examples dealing with the heat transfer in laminar fl ow 
of viscous fl uids. Sparrow and Cess [10] investigated the 
problem of the steady two-dimensional fl ow and heat 
transfer of the stagnation point fl ow taking into account 
the temperature-dependent heat generation (absorp-
tion). Topper [11] analyzed the piston fl ow in pipes with 
circular cross-section when the rate of heat generation 
depends linearly on the local temperature. The author 
presented an analytical solution both for the case where 
the wall is isothermal and for the case where the exterior 
surroundings are isothermal and the heat transfer coef-
fi cient between the tube wall and the surroundings is 
constant. The author claimed that this analysis should 
be helpful for estimating local temperature and also for 
predicting the transient response to changes in one of 
the independent operating variables. Foraboschi and 
Federico [12] have assumed the volumetric rate of heat 
generation to be in Eq. (1):
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in their study of the steady state temperature profi les for 
linear parabolic and piston fl ow in circular tubes. The 
above relation as explained by Foraboschi and Federico 
[12], is valid as an approximation of the state of some 
exothermic process and having T0 as the ambient fl uid 
temperature. With the inlet temperatures less than T0, 
they used Q = Q0(T − T0) and studied its effects on the 
heat transfer in laminar fl ow of non-Newtonian heat 
generating fl uids. On the other hand, Moalem [13] stud-
ied the effect of temperature-dependent heat sources 
[Q ∝ 1/(a + bT)], where a and b are constants, occurring 
in electrical heating, on the steady-state heat transfer 
within a porous medium.

In the present analysis, attention has been given to a 
study of the natural convection fl ow of a viscous incom-
pressible fl uid from a vertical fl at plate embedded in a 
stratifi ed medium with a distributed heat source which 
is dependent on the local temperature. Here the ambient 
temperature is assumed to be a linear function of x that 
measures the distance from the leading edge in the direc-
tion parallel to the surface of the plate. Solutions of the 
dimensionless boundary layer equations that govern the 
fl ow are obtained by introducing the primitive variable 
formulation as well as the stream-function formulation 
(SFF) for a wide range of values of the local stratifi cation 
parameter, X. The effect of varying the heat sources or 
sinks on the skin friction and heat transfer rates are also 
shown graphically for a fl uids having Prandtl number, 
Pr equal to 0.7 and 7.0. Finally the effects of varying heat 

source or sink are also shown in terms of the streamlines 
and the isotherms patterns.

2. Mathematical formalisms

Consider a steady two-dimensional viscous incom-
pressible fl uid on a vertical plate embedded in a strati-
fi ed medium with uniform heat source. Let x

_ 
be the 

distance along the surface from the leading edge and y
_

the normal distance from the surface. The fl ow confi gu-
ration and the co-ordinate system are shown in Fig. 1. 
The governing equations within the boundary layer 
subject to the Boussinesq approximation can be written 
as follows:
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where u and v are the x - and y -components of the 
velocity fi eld, respectively, g is the acceleration due to 
gravity, βT is the volumetric expansion coeffi cients for 
temperature, α is the effective thermal diffusivity. Fur-
ther, T and T∞,x are the temperature of the fl uid and the 
ambient temperature, respectively and Q is heat genera-
tion (>0) or absorption (<0) coeffi cient.

The boundary conditions for this problem can be 
written as:
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Fig. 1. The fl ow confi guration and the co-ordinate system.
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where the wall temperature, Tw is assumed to be con-
stant and the ambient temperature T∞ vary along the 
plate as given in Eq. (4), B is constant and L and T0 being 
the reference length and reference temperature, respec-
tively:
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where the Grashof number for diffusion, GrL is defi ned 
as:
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Using the transformations from Eq. (6), we obtain:
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where the heat generation parameter, λ, the stratifi ca-
tion parameter, S and the Prandtl number, Pr are defi ned 
respectively by:
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The Eqs. (8)–(10) satisfy the boundary conditions:
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The important physical quantities are the wall shear 
stress factor, τw, and the heat transfer rate, q(x) which is 
defi ned as:
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The dimensionless shear stress factor or the skin-
friction, Cf , can be expressed as follows:

C
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(14)

where U∞ is the free stream velocity. Using the quantity 
(14) in (13) and the transformation (6), we can calculate 
the local skin-friction in terms of the non-dimensional 
shearing stress, Cf , given as:
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We may now defi ne a non-dimensional coeffi cient of 
heat transfer in terms of Nusselt number Nu, which is:
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Substituting the transformation (6) in (13) with 
boundary condition (12), we obtain the rate of heat 
transfer, in terms of the non-dimensional Nusselt num-
ber, given as:
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The present problem is proposed to be investigated 
numerically using the primitive-variable formulation 
(PVF) as well as the SFF, the details of which are dis-
cussed in Sections 2.1 and 2.2.

2.1. Primitive-variable formulation

To fi nd the solutions of the set of Eqs. (8)–(10) 
together with the boundary conditions (12), we intro-
duce the fl owing free variable transformations to reduce 
the equations into parabolic form:
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Thus from Eqs. (8)–(10), we get:
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and the boundary conditions become:
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Now Eqs. (19)–(21) subject to the boundary condi-
tions (22) are discretised by a simple numerical scheme, 
in which we use central-differencing for diffusion terms 
and the forward-differencing for the advection terms 
and thus obtain:
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The resulted system of tri-diagonal algebraic is solved 
by double-sweep technique. The computation is started 
at X = 0, and then marches downstream implicitly. The 
ordinary differential equations governing the upstream 
condition at X = 0 can be obtained by taking the limit 
of Eqs. (23)–(25) that X approaches zero. The associated 
boundary conditions are Eq. (22) with X = 0. This is, 

in fact, the similarity solution of a natural convection 
boundary layer along a vertical plate with the y-axis. 
After several testing runs for convergence, the Y-and 
X-grids are set at 0.01 in the following computations.

Once we know the values of U, V, and Θ and their 
derivatives, we are at the position to fi nd the values of 
skin-friction and the rate of heat-transfer from the rela-
tions given, respectively as:
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where GrX is the local Grashof number.

2.2. Stream-function formulation

Here we introduce the conventional free-stream 
transformations on the set of Eqs. (8)–(10) as given 
below:
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where, ψ is the stream-function that satisfi es the equa-
tion of continuity and η is the similarity same as Y.

Thus from Eqs. (8)–(10), we get:
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where ′ denotes the differentiation with respect to η. The 
boundary conditions become:

f X f X X
f X X
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Now, we are at the position to employ one of the 
most effi cient and accurate implicit fi nite difference 
method together with the Keller-box elimination tech-
nique (also known as Keller box method), introduced 
by Keller [14] and described more detail in Hossain [15] 
and Hossain et al. [16,17]. To employ this method, the 
set of Eqs. (28) and (29) is written in terms of a system 
of fi rst order equations in Y, which are then expressed 
in fi nite difference form by approximating the functions 
and their derivatives in terms of the central differences 
in both co-ordinate directions. Denoting the mesh points 
in the (X, Y) plane by Xi and Yj, where I = 1, 2, 3, …, M
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and j = 1, 2, 3, …, N, central difference approximations 
are made such that the equations involving X explicitly 
are centred at (Xi−1/2, Xj−1/2) and the remainder at (Xi, 
Yj−1/2), where Yj−1/2 = (Yj + Yj−1)/2, etc. This results in a 
set of non-linear difference equations for the unknowns 
at Xi in terms of their values at Xi−1. These equations 
are then linearised by the Newton’s quasi-linearization 
technique and are solved using a block-tridiagonal algo-
rithm, taking as the initial iteration of the converged 
solution at X = Xi−1. Now to initiate the process at X = 0, 
we fi rst provide guess profi les for all fi ve variables 
(arising the reduction to the fi rst order form) and use 
the Keller box method to solve the governing ordinary 
differential equations. Having obtained the lower stag-
nation point solution it is possible to march step by 
step along the boundary layer. For a given value of X, 
the iterative procedure is stopped when the difference 
in computing the velocity and the temperature in the 
next iteration is less than 10−6, that is, when |δf i| ≤ 10−6, 
where the superscript denotes the iteration number. The 

computations were not performed using a uniform grid 
in the y direction, but a non uniform grid was used and 
defi ned by Yj = sinh((j−1)/p), with j = 1, 2, …, 301 and 
p = 100, the measures Ymax = 7.0 for Pr = 0.7 and Ymax = 5.0 
for Pr = 7.0.

As before, we calculate the local skin-friction and 
local heat transfer from the following relations:
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Solutions thus obtained for Pr = 0.7 and 7.0 are 
presented graphically in Figs. 2 and 3 in terms of local 
shear-stress and local heat-transfer coeffi cients. In Fig. 2, 
the dashed curves represent the results obtained for 
the case λ = 0, which was investigated by Venkatachala 
and Nath [18] by three methods, namely, (1) Keller-box 
method, (2) local non-similarity method and (3) the reg-
ular perturbation method.

Fig. 2. Numerical results of (a) heat-transfer coeffi cient and (b) shear-stress coeffi cient obtained by two methods against X for 
Pr = 0.7 and 7.0 while λ = 0.0.

X

–θ
′(0

, X
)

f″
(0

, X
)

0.0 1.00.80.60.40.2
0.0

0.2

0.4

0.6

0.8(a)

Pr

7.0

0.7

λ=0.0

PVF

SVF

X

0.0 1.00.80.60.40.2

λ=0.0

PVF

SVF

0.0

0.2

0.4

0.6

0.8

1.0(b)

Pr

0.7

7.0

Fig. 3. Numerical results of (a) heat-transfer coeffi cient and (b) shear-stress coeffi cient obtained by two methods against X for 
λ = −0.5, 0 and 0.5 while Pr = 0.7.
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 3. Results and discussion

We have investigated the problems of the steady two-
dimensional fl ow of viscous incompressible fl uid along a 
vertical fl at plate embedded in a stratifi ed medium with 
temperature dependent heat source as well as heat-sink.

We obtained numerical results for a variety of cases, 
in terms of heat-transfer coeffi cient, −Θ′ (0, X), and shear-
stress coeffi cient, f ″(0, X), a selection of which are shown 
in Figs. 2 and 3. For similar section of physical param-
eters, Figs. 4 and 5 plot the isotherms and contours of 
stream functions respectively. Near the leading edge, 

the surface temperature is higher than the local ambi-
ent temperature (i.e., that far from the surface but at the 
same value of X), and this generates an upward moving 
boundary layer due to buoyancy forces. However, as X 
increases, the local ambient temperature also increases 
since the thermal environment is stratifi ed. Thus the 
magnitude of the buoyancy force decreases which serves 
to decelerate and thicken the boundary layer, with a con-
sequent reduction in the surface shear stress and rate of 
heat transfer. These effects are seen quite clearly in both 
Figs. 2 and 3.

Fig. 4. Numerical results of isolines of temperature at Pr = 
0.7: (a) λ = −0.5, (b) λ = 0.0 and (c) λ = 0.5.

0.05

0.25

0.350.550.75

0.00

–0.05

0.15

–0.03

X

Y

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

λ = −0.5

(a)

X

0 1 2 3 4 5 6

λ = 0.0
0.70

0.50

0.30

0.10
0.00

–0.05

–0.10

Y

0.2

0.4

0.6

0.8

1(b)

X

0 1 2 3 4 5

λ = 0.5

(c)

0.00

–0.10

0.10

0.30

0.500.70

– 0.20

Y

0.2

0.4

0.6

0.8

1.0

Fig. 5. Numerical results of streamlines at Pr = 0.7: (a) λ = 
−0.5, (b) λ = 0.0 and (c) λ = 0.5.

λ = −0.5

0.55

0.50
0.44

0.390.330.28
0.11

0.220.170.06

0.01

0.58

X

Y

6.04.02.00.0

0.2

0.4

0.6

0.8

1.0(a)

λ = 0.0

Y

(b)

0.02
0.14

0.21
0.28

0.35
0.42

0.49
0.56

0.62

0.07

0.67
0.69

X

0.0 5.04.03.02.01.0

0.2

0.4

0.6

0.8

1.0

λ = 0.5

Y

(c)

0.79
0.70

0.53
0.44

0.35
0.27

0.18

0.61

0.85
0.87

X
0.0 2.0 4.0

0.2

0.4

0.6

0.8

1.0



S.C. Saha et al. / Desalination and Water Treatment 44 (2012) 7–14 13

source parameters, there is a strong reversal of fl ow, 
while for low heat source parameters the fl ow is weaker. 
The reversal of temperature was found to be stronger at 
high heat source parameter, λ and weaker for its lower 
value. The boundary layer thickness increases with the 
increasing values of λ.

At X = 1, the surface temperature and local ambient 
temperature are equal, and there is no overall buoy-
ancy force to drive the fl ow. However the fl uid is still 
moving upwards as it received its momentum from the 
buoyancy forces existing nearer the leading edge. This 
is why the surface shear stress has not reduced to zero 

Fig. 3 also displays quite a variation in the surface 
rate of heat transfer as λ, the source coeffi cient, varies. 
This may be understood from the fact that negative 
values of heat source parameter, λ correspond to the 
removal of heat from the fl ow, thereby thinning the ther-
mal boundary layer and increasing the surface tempera-
ture gradient. The opposite occurs when heat source 
parameter, λ is positive.

Figs. 4 and 5 represent the streamlines and isotherms 
respectively for different values of heat source param-
eter, λ (λ = 0.5, 0.0, −0.5) while Prandtl number, Pr = 
0.7. The numerical simulations reveal that at high heat 

Fig. 6. Numerical results of isolines of temperature at Pr = 
7.0: (a) λ = −0.5, (b) λ = 0.0 and (c) λ = 0.5.
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 at X = 1. When X > 1, buoyancy force acts downwards 
and therefore, we would expect an overall downward 
fl uid motion. A detailed discussion of this aspect would 
require a numerical analysis of the fully elliptic equa-
tions of motion. At some point near X = 1, two bound-
ary layers moving in opposite directions will collide and 
erupt from the surface as a jet. The formation of that 
jet is seen in Figs. 4 (a, b and c); where entertainment 
(or infl ow) of fl uid, which is a normal characteristic of 
boundary layer fl ows, is seen relatively close to the lead-
ing edge, but close to X = 1 there is net outfl ow.

The defect in the temperature occurs because the 
cooler fl uid from the bottom overshoots upward to 
a level where the ambient temperature is higher. Iso-
therms and streamlines are also shown in Figs. 6 and 
7 for the same heat source parameter, λ as of Figs. 4 
and 5 but for Pr = 7.0. The similar fl ow patterns can be 
observed. However, the strong fl ow reversal can be seen 
for Pr = 7.0.

4. Conclusions

In the present study, we have investigated the prob-
lem of the steady two-dimensional fl ow of viscous 
incompressible fl uid along a vertical fl at plate embed-
ded in a stratifi ed medium with uniform heat source. We 
have solved the boundary layer equations in fi nite dif-
ference method together with the Keller-box technique. 
Numerical results thus we obtained for the different 
values of the Prandtl number (Pr = 0.7 and 7.0 for air 
and water, respectively), while the values of the source 
parameter, λ = −0.5, 0.0 and 0.5. The effect of the heat 
source parameters on the Nusselt number and share 
stress as well as streamlines and isotherms have been 
shown graphically. From the present investigation, we 
may conclude the followings:

• Near the leading edge, the surface temperature is 
higher than the local ambient temperature and this 
generates an upward moving boundary layer.

• As X increases the magnitude of the buoyancy force 
decreases which serves to decelerate and thicken the 
boundary layer, with a consequent reduction in the 
surface shear stress and rate of heat transfer.

• The negative values of heat source parameter, λ cor-
responds to the removal of heat from the fl ow, thereby 
thinning the thermal boundary layer and increasing 
the surface temperature gradient. The opposite occurs 
when heat source parameter, λ is positive.

• The reversal of temperature happened to be stronger 
at high heat source parameter, and weaker for lower 
value of λ.
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