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A B S T R AC T

Artifi cial neural network (ANN) models were used to predict the permeate fl ux and rejection of 
ionic compounds (Na+, K+, Ca2+, Mg2+, SO4

2−, Cl−) of sugar beet press water through polyamide 
nanofi ltration membrane. Experimental data was obtained at different transmembrane pres-
sures (10, 15 and 20 bar), temperatures (25, 40 and 55°C) and feed concentrations (1–3 °Bx). The 
effect of the number of training points, the number of hidden neurons (H), type of transfer 
function and learning rule on the accuracy of prediction were studied. According to the results 
obtained for the best ANNs, 15% of the data was used to generate the model for the predic-
tion of fl ux, and cross validation was performed with 40% of the total data. Independent fl ux 
predictions were also determined for the remaining 45% of the data. While for the prediction 
of the rejection of ionic compounds, 50%, 25% and 25% of the total data was used to learn the 
network, cross validation and testing ANN model, respectively. The modeling results showed 
that the overall agreement between ANN predictions and experimental data was excellent for 
both permeate fl ux and rejections (r = 0.998 and r = 0.974, respectively). Furthermore, sensitivity 
analysis indicated that temperature and Brix have the most effect on the prediction of fl ux and 
rejections (except for Ca rejection) by ANN, respectively.
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1. Introduction

Press water derives from the pressing station of the 
extracted pulp after it has passed through the extraction 
unit [1]. Press water essentially contains 1–3% total solids 
including sugars (60–80% of total solids) and salts, col-
loids, and suspended impurities (20–40% of total solids). 
This stream is very important in sugar industry, because 
it is produced in a very large amount (about 0.6 kg kg−1 
of beet input). In addition, the presence of sugar and 
impurities in the press water affects the sugar extraction 

effi ciency with consequent lowering of the overall pro-
ductivity of the juice concentration and purity. Since 
press water is a very dilute stream, its direct evaporation 
does not represent an economic way for concentrating 
and recovering clean water for sugar extraction [1].

Bogliolo et al. [1] believed that the reverse osmosis (RO) 
treatment of press water could provide permeate, mainly 
consisting of clean water, to be used in the extraction unit, 
and a concentrate to be sent to the low grade sugar crys-
tallization. All these may lead to important benefi ts in the 
sugar production cycle, such as a reduction in the amount 
of diffusion juice, a reduction in the total amount of water 
to be evaporated, and a higher purity of the thick juice.
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 Nanofi ltration (NF) membranes are relatively new 
classes of membranes that have properties between 
those of ultrafi ltration (UF) and RO. It seems that NF is a 
suitable alternative for RO in the treatment of sugar beet 
press water. The advantages of NF over RO are lower 
energy consumption by 21%, higher fl ux and lower 
fouling [2]. The NF separation mechanisms involve 
both steric (Sieving) and the electrical (Donnan) effects. 
This combination allows NF membranes to be effective 
in separating mixtures of neutral and charged small 
organic solutes and salts [3]. Rejection of the molasso-
genic ions and permeate fl ux are very important factors 
to evaluate the industrial application of NF for press 
water treatment.

Predicting the performance of NF membrane sep-
arations is necessary for the design and optimization 
of the process. Artifi cial neural networks (ANNs) are 
capable of modeling highly complex and non-linear 
systems with large numbers of inputs and outputs [4]. 
ANNs have been used in several studies relevant to 
membrane technology, for example to predict, the evo-
lution of membrane fouling during cross-fl ow microfi l-
tration (MF) and UF of cane sugar and gum streams [5], 
the permeate fl ux and rejection for RO of ethanol and 
acetic acid and the UF of bleach plant effl uent [6], the 
rate of UF of proteins and the dynamic crossfl ow UF 
rate of colloids [7,8], the evolution of fl ux and deposit 
thickness in bentonite suspension MF [9], the dynamic 
permeate fl ux, total hydraulic resistance and the milk 
components rejection (protein, fat, lactose, ash and total 
solids) as a function of UF transmembrane pressure 
and processing time [10], the membrane fouling dur-
ing NF of ground and surface water [11], the steady-
state contaminant removal during NF of ground and 
surface waters under conditions typical of drinking 
water treatment [11], the fl ux decline in crossfl ow MF 
of a mixture that contains phosphate and fl y ash [12], 
cross-fl ow fi ltration of different highly concentrated 
salt solutions [13] and the rejection of neutral organic 
compounds by polyamide NF and RO membranes 
[14]. For a very complex system, such as a NF of real 
waste water, creating a mathematical model and apply-
ing a model-based control algorithm can involve hard 
work, whereas a ANN can be implemented in a more 
straightforward way [15].

According to the literature, no published work has 
been reported on the neural network modeling of press 
water NF. Therefore, the aim of the present work was 
to develop and validate the ANN models for prediction 
of permeate fl ux and ionic compounds rejection dur-
ing cross fl ow NF of sugar beet press water based on 
the experimental data, which was obtained at different 
transmembrane pressures, temperatures and feed con-
centrations.

2. Materials and methods

2.1. Membrane system

The pilot plant membrane system used in this study 
was equipped with a feed tank (20 l), a reciprocating 
pump, tubular module, two pressure gauges, a tubular 
heat exchanger, two control valves and a temperature 
sensor. The characteristics of NF membrane are summa-
rized in Table 1. An electronic balance (±0.01 g) was used 
to automatically record the weight of permeate every 60 s 
by a computer for the fl ux calculating. The observed 
rejection (Robs) of each ionic compound was calculated 
after the 60 min operation when fl uxes were steady state 
according to the following equation:

R
C

Cobs
p

fCC
= −1  (1)

where Cp and Cf are the concentrations of each compo-
nent (Na+, K+, Ca2+, Mg2+, SO4

2−, Cl−) in the permeate and 
the feed streams, respectively.

2.2. Analytical methods

Sodium and potassium ions of permeate and feed 
samples were measured using a Betalyser instrument 
(Dr. Wolfgan, Kernchen, Germany). Calcium, magne-
sium, sulfate and chloride were measured based on 
AOAC methods [16]. All measurements were carried 
out at least twice.

2.3. Experimental procedure

Sugar beet press water was prepared from Abkouh 
Sugar factory, Mashhad, Iran and then stored in several 

Table 1
Characteristics of nanofi ltration membrane and module 
used in this study

Membrane type AFC80 (ITT PCI Membranes 
Ltd, UK)

Material Polyamide

Effective area (cm2) 24

Pore diameter (nm) 0.68

Rang of pH tolerance 1.5–10.5

Max. temperature (°C) 70

Maximum pressure (bar) 60

Apparent retention 
 character

80% NaCl

Module Tubular (MIC-RO 240) 
(ITT PCI Membranes Ltd, UK)
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containers (25 l) at −20°C. For each run, one container 
was defrosted and the effect of varying temperature 
(25, 40 and 55°C), transmembrane pressure (10, 15 and 
20 bar) and feed concentration (1–3 °Bx) on permeate 
fl ux, and ionic compounds rejection (Na+, K+, Ca2+, Mg2+, 
SO4

2−, Cl−) were studied. NF experiments were carried 
out in batch mode at constant pH and fl ow rate (5.7 and 
18.07 kg min−1, respectively). All experimental runs were 
repeated twice.

2.4. ANN modeling

In this study, fully interconnected multilayer feed-
forward network was applied for modeling fl ux and 
ionic compounds rejections in NF process of press 
water. Multilayer perceptron (MLP) network consists 
of (a) an input layer with neuron(s) representing input 
variables, (b) an output layer with neuron(s) represent-
ing the dependent variable(s), and (c) one hidden layer 
containing neuron(s) to help capture the nonlinearity in 
the system. Figs. 1 (a) and (b) shows schematically two 
individual ANNs that are constructed to predict perme-
ate fl ux and ions rejections, respectively. It can be seen 
that the four inputs including pressure, temperature, 
time and feed concentration were used to model the 
fl ux, while the time as input was omitted for prediction 
of ionic compounds rejection.

In the modeling process, there are several variables 
that have effects on the ANN predictability perfor-
mance. Generally, these variables are the number of hid-
den layers (L), the number of hidden neurons (H), the 
type of transfer function, the type of training rule and 
the percentage of used data for training, validating and 
testing stages [4,10,17]. To fi nd the best set of these vari-
ables and parameters, all of them must be varied and 
the best combination should be chosen. Principally, for 
an ANN to perform an acceptable prediction, a set of 
weights that minimizes the error between target and 
predicted outputs should be found. The ANN predict-
ability can be judged by a combination of some statis-
tical parameters such as mean-squared error (MSE), 
normalized mean-squared error (NMSE), mean abso-
lute error (MAE), correlation coeffi cient (r), the H, the L 
and the number of iterations or epoch (C) [10,17]. In this 
study, MSE, NMSE, MAE, and r for each output were 
calculated by the following equations [17–19]:

MSE = =
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where Oi is the ith actual value, Ti is the ith predicted 
value, N is the number of data, σ2 is the variance, and:
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The universal approximation theory suggests that a 
network with a single hidden layer with suffi cient H can 
map any input to any output to any degree of accuracy 
[20]. Thus the ANNs used in the present work featured 
with a single hidden layer and bias nodes in the input 
and hidden layers. The bias neurons accept no input 
and transmit a constant output equal to one in order to 
preserve the universal approximation property of the 
network [10,17]. The optimum number of neurons in 
the hidden layer was determined by a trial and error 
procedure based on minimizing the difference between 
estimated ANN outputs and experimental values. In 
total, 1620 data for the modeling of fl ux and 162 data 
for the modeling of rejections were collected by experi-
mental trails. First, the data order was randomized and 
then the data was divided into three partitions. The fi rst 
partition (training data) was used to perform training 
the network. The second one (cross validation data) was 
used to evaluate the prediction quality of the network 
during the training stage. For the purpose of estimating 
the performance of the trained network on new data, a 
third partition, which was never seen by the ANN dur-
ing the training and cross-validation steps, was used for 
testing.

To select the best transfer function, the sigmoid and 
the hyperbolic tangent functions were tested to transfer 
neuron inputs to calculate fl ux output, while the sigmoid 
function, the hyperbolic tangent and linear hyperbolic 
tangent were evaluated to transfer neuron inputs to calcu-
late ionic compound rejections. In addition, two learning 
rules (including momentum and Levenberg Marquardt) 
and different percentages data were examined to train, 
validate and test the ANNs. For validating of momen-
tum as a learning rule, momentum value was fi xed at 
0.7, and learning rate was determined at level 1 on the 
hidden layer and 0.1 on the output layer. As a network 
is training, we may want to know the effect that each 
of the network inputs is having on the network output. 
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This provides feedback as to which input channels 
are the most signifi cant. From there, we may decide to 
prune the input space by removing the insignifi cant 
channels. This will reduce the size of the network, which 
in turn reduces the complexity and the training times. 
Sensitivity analysis is a method for extracting the cause 
and effect relationship between the inputs and outputs 
of the network. The network learning is disabled dur-
ing this operation such that the network weights are not 
affected. The basic idea is that the inputs to the network 
are shifted slightly and the corresponding change in the 
output is reported either as a percentage or a raw differ-
ence. In this work, the software used for the ANNs mod-
eling was Neuro-Solutions 6 for Microsoft Windows.

3. Results and discussion

The ANN confi guration has two main variables 
(L and H) that have a strong infl uence on its outcome. 
To fi nd the best ANN confi guration, different networks 
were built with different hidden neurons varying from 
2 to 20. Depending on the number of neurons, differ-
ent weight vectors are generated which act as starting 
points in the error hyper-space. The hidden layer acts as 
a feature detector. Therefore, the more hidden neurons, 
the more features can be detected, but the ANN will be 
more complex and as a result it will require a longer 
time to train. In addition, the number of local minima 
will increase, which requires multiple neuron runs as 
discussed above.

Fig. 1. Schematic of multi-layer feed forward neural network architectures with one hidden layer used for prediction of (a) 
permeate fl ux, and (b) ionic compounds rejections.
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Totally, 62 runs were made to train, validate and test 
the data in order to fi nd the best combination for pre-
diction of fl ux (19 different neurons × 2 different trans-
fer functions + 2 different training rules + 21 different 
percentages of data). However, 77 runs were made to 
train, validate and test the data in order to select the best 
combination for prediction of rejection (19 different neu-
rons × 3 different transfer functions + 2 different training 
rules + 18 different percentages of data). Generally, the 
ANN with the lowest testing errors (MSE, NSME and 
MAE) and highest r was selected as the best. In some 
cases, we had to consider more factors in addition to the 
above parameters such as C of the training and cross 
validation steps for choosing the best combination of the 
mentioned factors.

The values of modeling parameters obtained for esti-
mation of fl ux and ions rejection during the testing pro-
cess of different ANN architectures (with 2–20 neurons 
in the hidden layer and different transfer functions in the 
hidden and output layers) are shown in Tables 2 and 3, 
respectively. It is worth noting that MSE, NMSE, MAE, 
and r values reported for rejections in Table 3 are means 
of values that are obtained for all ionic compounds rejec-
tions for example, sodium, potassium, calcium, etc.

As it is seen in Table 2, the ANN with a sigmoid func-
tion in hidden and output layers and six hidden neurons 
had the minimum values of MSE (0.539), NMSE (0.002), 
and MAE (0.541), and maximum r value (0.998) for pre-
diction of the fl ux. Although the ANN with a tanh func-
tion and 10 neurons in the hidden layer showed very 
similar results, the fi rst one was chosen as the best ANN 
model to predict the permeate fl ux in press water NF 
because less neurons were used.

As shown in Table 3, the ANN with a linear hyper-
bolic tangent function in hidden and output layers and 
16 hidden neurons had the lowest values of MSE (0.193), 
NMSE (0.086) and MAE (0.304) for prediction of the ions 
rejection. Although, this ANN did not show the highest r 
value among the ANNs obtained, the difference between 
r values of this architecture and two other proper ANNs, 
for example, ANN with a hyperbolic tangent or sigmoid 
functions in hidden and output layers and two hidden 
neurons, was not considerable. More details about the 
ANN parameters of three selected ANNs for predictions 
of the rejection are given in Table 4. It can be found that 
all parameters obtained for the ANN with linear hyper-
bolic tangent function in hidden and output layers and 
16 hidden neurons, were the lowest in comparison with 

Table 2
Different architectures of ANN with different neurons in the hidden layer and transfer functions in the hidden and output 
layers used for prediction of permeate fl ux in sugar beet press water nanofi ltration

Hidden 
layer 
neurons

Tanh function Sigmoid function

MAE NMSE MAE r MSE NMSE MAE r

 2 197.03 0.532 1.99 0.684 5.011 0.027 1.688 0.986

 3 195.99 0.517 1.73 0.69 5.123 0.025 1.707 0.987

 4 3.803 0.022 1.467 0.988 2.6 0.014 1.299 0.994

 5 2.447 0.013 1.205 0.993 1.458 0.007 0.914 0.996

 6 1.374 0.007 0.885 0.996 0.539 0.002 0.541 0.998

 7 1.797 0.009 1.052 0.996 2.917 0.016 1.286 0.991

 8 5.163 0.028 1.468 0.987 3.092 0.017 1.309 0.991

 9 3.049 0.014 1.271 0.992 0.701 0.003 0.66 0.998
10 0.552 0.002 0.509 0.998 3.161 0.018 1.347 0.992

11 2.901 0.016 1.252 0.992 192.51 0.497 1.126 0.709

12 4.55 0.026 1.456 0.987 0.821 0.004 0.674 0.998

13 3.927 0.022 1.32 0.988 3.076 0.017 1.407 0.991

14 4.972 0.027 1.575 0.986 0.861 0.005 0.725 0.998

15 4.218 0.023 1.344 0.988 3.264 0.019 1.423 0.99

16 0.462 0.002 0.51 0.998 3.904 0.021 1.542 0.989

17 6.171 0.035 1.616 0.983 0.709 0.003 0.639 0.998

18 0.386 0.002 0.496 0.998 3.126 0.017 1.422 0.991

19 3.909 0.02 1.376 0.989 3.493 0.018 1.427 0.99

20 4.468 0.024 1.453 0.989 1.418 0.008 0.948 0.997
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 Table 3
Different architectures of ANN with different neurons in the hidden layer and transfer functions in the hidden and output 
layers used for prediction of ionic compounds rejections in sugar beet press water nanofi ltration

No. of 
neurons

Linear tanh function Tanh function Sigmoid function

MSE NMSE MAE r MSE NMSE MAE r MSE NMSE MAE r 

  2 0.787 0.203 0.64 0.956 0.355 0.105 0.409 0.977 0.401 0.113 0.404 0.975

  3 1.02 0.248 0.688 0.918 1.02 0.21 0.642 0.918 0.97 0.183 0.588 0.944

  4 1.205 0.482 0.754 0.818 0.524 0.322 0.531 0.847 2.878 1.205 0.855 0.437

  5 2.465 2.0608 1.159 0.521 0.709 0.379 0.615 0.832 1.012 0.6 0.689 0.778

  6 0.69 0.164 0.619 0.946 0.419 0.13 0.485 0.958 0.982 0.25 0.668 0.932

  7 1.067 0.595 0.747 0.804 2.474 0.932 1.037 0.68 0.286 0.196 0.36 0.932

  8 1.07 0.744 0.698 0.907 1.604 0.871 0.748 0.883 0.958 0.679 0.721 0.892

  9 1.683 0.484 0.829 0.935 0.589 0.197 0.487 0.929 1.08 0.304 0.669 0.959

10 1.159 0.362 0.664 0.883 0.461 0.205 0.471 0.899 0.679 0.199 0.583 0.917

11 0.762 0.63 0.642 0.825 0.671 0.46 0.554 0.853 0.403 0.424 0.472 0.823

12 0.888 0.745 0.641 0.841 0.756 0.5 0.616 0.856 1.227 1.081 0.81 0.753

13 1.869 0.99 1.022 0.688 0.306 0.171 0.413 0.943 0.492 0.293 0.524 0.909

14 1.433 0.534 0.831 0.8 0.559 0.591 0.548 0.718 0.929 0.595 0.652 0.781

15 1.878 0.388 0.945 0.895 1.123 0.196 0.709 0.953 1.231 0.208 0.798 0.955
16 0.193 0.086 0.304 0.974 0.616 0.159 0.506 0.964 0.375 0.135 0.444 0.952

17 1.786 0.522 0.937 0.799 1.246 0.307 0.698 0.951 1.325 0.3 0.702 0.947

18 1.359 0.349 0.77 0.883 0.295 0.123 0.381 0.961 0.992 0.23 0.677 0.929

19 0.739 0.331 0.626 0.866 0.414 0.181 0.464 0.923 1.521 0.585 0.85 0.762

20 1.522 0.557 0.831 0.85 1.913 0.76 0.936 0.811 2.007 0.68 0.936 0.859

Table 4
More information about three selected architectures of ANN selected to model the rejection that have the minimum MSE 
with different transfer function and number of neurons

No. of 
neurons

Transfer 
function

Training 
epoch

Validating 
epoch

Minimum MSE 
of training

Final MSE 
of training

Minimum MSE 
of validation

Final MSE of 
validation

16 Linear Tanh   42 17 0.0008 0.0008 0.0260 0.0360

 2 Tanh 125 25 0.0240 0.0240 0.0433 0.0473

 2 Sigmoid 107 17 0.0063 0.0063 0.0158 0.0309

other networks. Therefore, this one was chosen as the 
best ANN to model the ionic compounds rejection.

Comparing two learning rules used for selected 
ANNs, it was found that the Levenberg Marquardt rule 
demonstrates better results than the momentum rule in 
modeling the fl ux and rejection (Table 5).

In ANNs modeling, the less data used to train, the 
better ANN results will be for industrial applications, 
since the time and the cost of experiments would be 
reduced. In fact, when the percentage of training/vali-
dating data is less and the percentage of testing data is 
more, the ANN is better if the power of network to pre-
dict the output based on the new input will be higher. 

Therefore, different percentages of data (5–60% of total 
data) was used in this study for training step and MSE, 
NMSE, MAE and r values of each run was determined 
(Table 6). It can be seen that 15% of the whole data was 
enough to obtain the best ANN (lowest MSE, NMSE, 
MAE and highest r) for fl ux modeling. In the next step, 
15% of total data was used for training step of each run 
and the percentage of used data for cross validation was 
changed from 5% to 45%. As it is shown in Table 7, when 
40% of total data was applied for cross validating the net-
works, the minimum MSE (0.677), NMSE (0.003), MAE 
(0.633) and maximum r (0.998) values were achieved for 
modeling the permeate fl ux.
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Similar to the procedure used for fl ux, different per-
centages of data (15–60% of total data) were applied to 
train the ANN selected for prediction of ions rejection 
and the obtained MSE, NMSE, MAE and r values of each 
run were presented in Table 8. It can be found that 50% 

of the whole data was enough to obtain the best ANN 
based on the lowest MSE, NMSE, MAE and highest r 
values. In the next step, 50% of total data was used for 
training step of each run and different percentages of 
data (5–40%) were applied for cross validation step. As 
it is shown in Table 9, when 25% of the total data was 
used for cross validating, the resulted ANN represented 
the lowest MSE (0.193), NMSE (0.086), MAE (0.304) and 
the highest r (0.974) values.

As it is shown in Fig. 2, symbols were used to 
identify experimental data points of fl ux which were 
obtained at TMP 20 bar, temperature 40°C and differ-
ent feed concentration (1–3 °Bx), while the lines show 
data points which were predicted by the chosen ANN 
in the testing phase. It can be seen that the ANN suc-
cessfully predicts the dynamic behavior of fl ux both 
for validating and testing data. Similar results were 
obtained for other operating conditions (fi gures not 
shown).

The prediction effi ciency of the chosen ANN model 
(3/16/1) for rejection of Na+, K+, Ca2+, Mg2+, SO4

−2 and 
Cl− is presented in Figs. 3 (a)–(f), in which the predicted 
rejection values are plotted against their experimentally 
measured values. The calculated r values for estimation 
of Na+, K+, Ca2+, Mg2+, SO4

−2 and Cl− were obtained 0.99, 

Table 5
Comparison of two learning rules used for selected ANN architectures to predict the permeate fl ux and ionic compounds 
rejection in sugar beet press water nanofi ltration

Parameter No. of neurons Levenberg Marquardt Momentum

  MSE NMSE MAE r MSE NMSE MAE r

Flux   6 0.539 0.002 0.541 0.998 13.312 0.072 2.853 0.970

Rejection 16 0.193 0.086 0.304 0.974 0.495 0.125 0.462 0.962

Table 6
Comparison of different percentages of data used for training 
of selected ANN architectures to model the permeate 
fl ux

Training 
data (%)

Validation 
data (%)

Testing 
data (%) 

MSE NMSE MAE r  

 5 47.5 47.5 2.019 0.01 1.011 0.994

10 45 45 0.956 0.005 0.7 0.997
15 42.5 42.5 0.57 0.003 0.572 0.998

20 40 40 1.243 0.007 0.868 0.997

25 37.5 37.5 0.756 0.004 0.586 0.997

30 35 35 1.014 0.006 0.712 0.997

35 32.5 32.5 0.437 0.002 0.504 0.998

40 30 30 4.161 0.023 1.534 0.988

45 27.5 27.5 1.868 0.01 1.121 0.997

50 25 25 3.728 0.02 1.242 0.99

55 22.5 22.5 1.713 0.009 0.938 0.995

60 20 20 2.411 0.012 0.913 0.993

Table 7
Comparison of different percentages of data used for cross-
validation and testing of selected ANN architectures to 
model the permeate fl ux

Training 
data (%)

Validation 
data (%)

Testing 
data (%)

MSE NMSE MAE r

15  5 80 61.233 0.249 0.896 0.866

15 10 75 64.838 0.251 0.862 0.865

15 15 70 1.013 0.005 0.786 0.997

15 20 65 0.887 0.004 0.677 0.997

15 25 60 1.606 0.008 0.967 0.996

15 30 55 88.35 0.316 0.946 0.827

15 35 50 1.272 0.007 0.844 0.997
15 40 45 0.677 0.003 0.633 0.998

15 45 40 1.187 0.006 0.853 0.997

Table 8
Comparison of different percentages of data used for 
training of selected ANN architectures to model the ionic 
compounds rejection

Training 
data (%)

Validation 
data (%)

Testing 
data (%)

MSE NMSE MAE r

15 42.5 42.5 5.068 1.208 1.482 0.673

20 40 40 3.951 1.526 1.414 0.586

25 37.5 37.5 1.895 0.547 0.855 0.908

30 35 35 1.312 0.412 0.785 0.865

35 32.5 32.5 2.294 0.605 0.897 0.826

40 30 30 1.487 0.267 0.718 0.946

45 27.5 27.5 1.164 0.196 0.631 0.926
50 25 25 0.193 0.086 0.304 0.974

55 22.5 22.5 0.517 0.204 0.51 0.938

60 20 20 0.214 0.148 0.354 0.965
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Fig. 3. Experimental and predicted ionic compounds rejections of sugar beet press water nanofi ltration. ANN used: 3/16/1. 
Training points/validation points/testing points: 81/40/41.
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Fig. 2. Dynamic prediction of permeate fl ux during nanofi l-
tration of sugar beet press water in different concentrations. 
Lines show the ANN prediction and symbols show the 
experimental data that was used for training ( ), validating 
(×) and testing ( ). ANN used: 4/6/1. Training points/vali-
dation points/testing points: 243/648/729 (operating condi-
tions: TMP = 20 bar and T = 40°C).
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Fig. 4. Sensitivity of the best chosen ANN (4/6/1) toward the 
inputs for fl ux prediction.
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Flux0.97, 0.98, 0.94, 0.94 and 0.99, respectively, which are 
acceptable and revealed excellent agreement between 
predicted and experimental values.

Finally, sensitivity analysis was tested in order to 
study the sensitivity of neural network models toward 
different inputs. This testing process provides a measure 
of the relative importance among the inputs of the neu-
ral model and illustrates how the model output varies in 
response to variation of an input. As shown in Fig. 4, the 
temperature was the most effective factor in predicting 
the permeate fl ux by the selected ANN. Whereas, feed 
concentration (Brix) was the main sensitive factor for 
prediction of ionic compounds rejection (except for Ca 
rejection) by the chosen ANN (Fig. 5).

Table 9
Comparison of different percentages of data used for cross-
validation and testing of selected ANN architectures to 
model the ionic compounds rejection

Training 
data (%)

Validation 
data (%)

Testing 
data (%)

MSE NMSE MAE r

50 5 45 3.51 0.91 1.379 0.583

50 10 40 0.847 0.187 0.603 0.932

50 15 35 0.668 0.211 0.578 0.926

50 20 30 0.228 0.12 0.348 0.946
50 25 25 0.193 0.086 0.304 0.974

50 30 20 0.552 0.163 0.479 0.942

50 35 15 0.535 0.118 0.556 0.97

50 40 10 0.926 0.352 0.568 0.931
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4. Conclusions

Totally, the following conclusions can be drawn from 
this investigation:

1. The multilayer feed forward neural network based 
on four inputs (pressure, temperature, time and Brix), 
sigmoid function as the transfer function, six neurons 
in the single hidden layer and Levenberg Marquardt 
method as the learning rule was found to be the best 
ANN for predicting permeate fl ux of sugar beet press 
water NF, which showed the lowest MSE (0.677) and 
the highest r (0.998) values. These results could be 
obtained by 15%, 40% and 45% of total data for train-
ing, cross validation and testing, respectively.

2. The multilayer feed forward neural network based on 
three inputs (pressure, temperature and Brix), linear 
hyperbolic tangent function as the transfer function, 
16 neurons in the single hidden layer and Levenberg 
Marquardt as the learning rule was found to be the best 
ANN for predicting ionic compounds rejection of sugar 
beet press water NF, which showed minimum MSE 
(0.173) and maximum r (0.974) values. These results 
could be obtained using 50%, 25% and 25% of total data 
for training, cross validation and testing, respectively.

3. There was an excellent agreement between the experi-
mental and the predicted values of permeate fl ux and 
ionic compounds rejection, then the effi ciency of the 
selected ANN models were completely acceptable 
for prediction of both permeate fl ux and ionic com-
pounds rejection in different conditions (pressure, 
temperature and concentration).

4. Temperature and Brix were determined as the most 
sensitive inputs of the best chosen ANNs for the pre-
diction of the fl ux and ionic compounds rejection 
(except for Ca rejection), respectively.
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Fig. 5. Sensitivity of the best selected ANN (3/16/1) toward 
the inputs for prediction of ionic compounds rejection.
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