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ABSTRACT

The main objective of the work was to regenerate a cutting fluid HS20 used in the manufac-
turing of silicon wafers. Centrifugation at ambient temperature is initiallyconsidered for the
treatment of the cutting fluid HS20. However, the slurry being heavily loaded with mineral
colloids, tests conducted following the use of this process, have proved its efficiency to be
low. Indeed, the best results for colloidal matter abatement have never exceeded 30%. By
contrast, an ultrafiltration through a polyethersulfone membrane with a cutoff of 1 kDa
shows excellent efficiency and affinity towards the fluid (HS20) to be considered, allowing
its full recovery by maintaining its original cutting fluid characteristics. However, this pro-
cess does present some drawbacks. A strong resistance to flow across the membrane of up to
60% of the total resistance is observed and a drop in permeation flux of about 90% are
observed. Given these results, reinforcement of ultrafiltration, under the same operating con-
ditions, by chemical pretreatment is considered. Chemical pretreatment with ultrafiltration
offers better regeneration efficiencies under same flow conditions through the membrane as
compared to an ultrafiltration process. Indeed, the fouling index is significantly reduced to
around 153� 103+ s/L2 and a permeation flux comparable to that observed for virgin cutting
fluid (HS20) is obtained.
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1. Introduction

The photovoltaic (PV) industry is going through a
rapid phase of growth. In 2006 alone, the global PV

production was over 2GW. The majority of PV cells
are made of silicon, which is mainly produced during
the energy-intensive Siemens process. As per the
current status, the wafer shares more than 65% of the
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cost of solar cells, but on the other hand, more than
40% of the high-purity silicon is wasted during wafer
slicing [1].

The manufacturing of photovoltaic cells involves a
large number of complex and highly delicate pro-
cesses including silicon growth, oxidation, doping,
photolithography, etching, stripping, dicing, metalliza-
tion, planarization, cleaning, etc. There are several
types of organic and inorganic compounds involved
in the manufacturing processes of cells. Some of the
steps in the sequence are wafer backgrinding, sawing,
die attachment, wire bonding, encapsulation, electro-
plating, trim and form, and marking [2]. Cutting
fluids are a viscous slurry consisting of solid silicon
carbide and fluid glycol. Silicon carbide is used as a
sawing agent in the sawing process of wafers, where
it is applied to the wire saw in order to provide to it
the necessary specific hardness to saw wafers. The
glycol acts a substrate for as well well as a coolant for
the silicon carbide [3].

The effluent of cutting fluids called silicon kerf is
formed as a slurry along with the cutting fluid, (usu-
ally polyethylene glycol) and other impurities, mainly
from the broken particles of the SiC abrasive and iron
from the wire. It has a non-negligible environmental
and economic impact associated with the manufactur-
ing process of PV systems. There are only a few pub-
lished examples of technologies relating to the
separation and purification of silicon powder kerf,
and many of these lack significant detail [4]. During
the cutting process, they carry silicon and iron parti-
cles respectively from the base material and sawing
wire. Dumping of such waste in the environment is
subject to specific regulations regarding disposal of
hazardous waste, which depends on special industrial
waste plans [5]. They must not be abandoned or
burned in open air [6]. Because of their polluting nat-
ure, it is recommended to collect, concentrate and
regenerate them. The separation of the solvent and
particles is possible at about 80% and the rate of reuse
can exceed 80% [7,8].

The regeneration of cutting fluids via simplest and
least expensive processes should allow the reuse of
used fluid through the recovery of its lubricating char-
acteristics, thus reducing virgin fluid consumption
while preserving the environment.

2. Experimental

2.1. Material and methods

The Amicon ultrafiltration cell 8200 is used for
tests of solid–liquid separation (Fig. 1). The tested
membrane, provided by Pall Company, is made of

polyether sulfone with a cutoff of 1 kDa. The cutting
fluid used for all tests is provided by the Unit of Sili-
con Technology Development of Algiers (UDTS). Used
fluid is an average sample of the concentrate recov-
ered within the manufacturing unit of silicon bricks.
The cutting fluid used (slurry) is mainly composed of
HS20 loaded with SiC and iron wire waste that are
produced during the sawing process [9–12]. The pH
of the slurry is around 6.9 and the whole operation is
conducted at room temperature. The organic solvent
used is dichloromethane of industrial quality pro-
vided by Panreac. The pretreatment performed consist
in mixing the slurry with dichloromethane in a
proportion of 10% followed by vigorous stirring for a
minute and then settling. The resulting liquid phase is
recovered and is made to undergo frontal

Fig. 1. Simplified diagram of the device for filtration.

Table 1
Physicochemical characteristics of the HS20

Chemical proprieties

Molecular formula C2nH4n+2On+1, n= 8.2 to 9.1

Molecular weight 380–420/mol

Density 1.128 g/cm3

Melting point 4–8 ˚C

Viscosity 90.0 cSt at 25 ˚C, 7.3 cSt at 99 ˚C

Fig. 2. Structure of HS20.
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Fig. 3. Permeation flux vs. time at p= 1bar.
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Fig. 4. t/v vs. v at p= 1bar.

Fig. 5. FTIR spectrum for comparison of the regenerated oil and virgin oil.
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ultrafiltration through a polyethersulfone membrane
of 1 kDa. The comparison of the recovered fluid and
virgin fluid is performed through an analysis made
using infrared spectrophotometry. Table 1 represents
the different physical and chemical properties of
HS20, and the chemical structure is presented in
Fig. 2.

3. Results and discussion

Fig. 3 exhibits the variation of permeate flux as a
function of time at a constant pressure of 1 bar for
pure HS20, the slurry and the slurry pretreated by
dichloromethane. It appears that the flow of pure
HS20 remains constant throughout the operation,
indicating a macromolecule size of less than 1 kgDa.
On the other hand, ultrafiltration of used cutting
fluid reveals a rapid decrease in permeate flux right
after the initiation of the filtration, eventually reach-
ing a steady state that is maintained throughout the
ultrafiltration and marked by a relative permeation
flux decrease of up to 90%. For this case, the represen-
tation of t/v vs. the cumulative volume identifies a
cake filtration mechanism (see Fig. 4). The curve
indicates a non-negligible fouling index, with compu-
tations providing an Modified Fooling Index (MFI) of
2147� 103+ s/L2. Furthermore, Fig. 1 shows that under
the same operating conditions, the values of perme-
ation flux for the chemically pretreated cutting fluid
are reasonably comparable to those obtained for pure
HS20, with a maximal relative decrease of about 15%.
For this case, the same method described above pro-
vides a much lower MFI of 153 � 103+ s/L2. Moreover,
comparison of the infrared spectra which shows
(Fig. 5) a striking similarity between pure HS20 and
the fluid obtained after ultrafiltration reinforced by a
chemical pretreatment with dichloromethane indicates
excellent regeneration.

4. Conclusion

The main objective of this work was to regenerate a
cutting fluid HS20. It is used in the cutting of silicon
ingots into thin slabs at the UDTS. Such a regeneration
presents a double interest, economical and environmen-
tal, by reducing the consumption of virgin cutting fluid
and wastage of highly polluting slurry. The present pre-
liminary study demonstrates that ultrafiltration rein-
forced by a chemical pretreatment based on

dichloromethane is a very feasible method for regenera-
tion of the cutting fluids studied.
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