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ABSTRACT

Photovoltaic reverse osmosis systems can provide water to many underserved communities.
These systems need to be custom-tailored for the water demand, solar insolation, and water
characteristics of a specific location. Systems can be constructed from modular components
to be cost effective. Designing a custom system composed of modular components is not a
simple task. For a given modular inventory, a large number of possible system configura-
tions exist. Determining the best system configuration is a daunting task for a small commu-
nity without expertise. This paper presents a computer-based modular design method that
can enable nonexperts to configure such a system for their community from an inventory of
modular components. The method employs fundamental engineering principles to reduce
the number of possible configurations and optimization methods to configure a system.
Examples cases for a range of communities demonstrate the power of this approach.
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1. Introduction

1.1. Motivation

Access to safe drinking water is a critical problem
for many isolated communities. They often have
access to seawater or brackish groundwater, making
desalination a possible solution. However, desalina-
tion is an energy intensive process. Power is often a
critical issue for remote communities that are off the
electrical grid. Diesel generators can be used, but they
pollute the environment and fuel is expensive. It has

been shown that photovoltaic-powered reverse osmo-
sis (PVRO) desalination systems can provide water for
these locations and can be cost effective for well-
designed systems in terms of water produced over the
system lifetime [1].

Each remote community has different seasonal
solar characteristics, water chemistry, and water
demand for best performance; a PVRO system needs
to be custom configured to meet the individual needs
of the community. Systems assembled from
inventories of mass-produced commercial components
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are most cost effective. Unfortunately, choosing the
system configuration from an inventory of available
modular components to meet the individual needs of
a location is not a simple task. For a given modular
inventory, there are a very large number of possible
system configurations. An experienced designer could
select the best components and architecture. However,
for remote areas without experts, determining the best
system configuration is difficult.

This paper presents a computer-based modular
design method that will enable nonexperts to config-
ure the best custom PVRO system from an inventory
of available components. This algorithm applies
design filters to a component inventory to limit the
size of the design space for a given application and
location. An optimization is then conducted over this
reduced design space to determine the best system
configuration.

1.2. Background

Researchers have developed methods to optimize
reverse osmosis (RO) desalination systems [2–6].
Initial research developed a generalized RO system
representation, which was used in a mixed-integer
nonlinear program to determine the two-stage RO sys-
tem that would satisfy a required water production
[2]. Researchers have also simplified this approach to
eliminate some of the integer design variables [3–5].
Other system representations based on graph theory
have also been developed to optimize the configura-
tion of a PVRO system [6]. The models used in these
methods give a simple assumption that water flowing
through the network can be determined arbitrarily,
when these rely on valve positions and pump operat-
ing points. Also, these methods lack the ability to
incorporate modules from a given inventory, which is
essential for small remote communities.

Modular design methods have also been devel-
oped for other applications, such as robotic systems.
Researchers considered inventories of different robotic
links, end-effectors, robot bases, and power systems.
Genetic algorithms were employed to optimize these
discrete systems [7–10]. Researchers developed meth-
ods to reduce the size of the design space to limit the
computational effort required in system optimization
[7,8]. These methods are domain specific and cannot
be directly applied to PVRO systems. Also, the simple
cases and the associated models were not complex,
making the large design space easy to manage.

Modular design methods have been used to design
analog and digital electronic circuits. Again, genetic
algorithms were used to design circuits such as analog
filters [11–14] and transistor-based amplifiers [13].
These methods are not applicable to the design of
modular PVRO systems as the methods did not con-
sider inventories of potential modules, and used rela-
tively simple system models.

Automated network synthesis has also been
applied in the design of heat exchanger, mass exchan-
ger, and chemical processing networks. These prob-
lems were commonly solved using genetic algorithms
[15–17]. These methods provided insight for the mod-
ular design problem, but are not directly applicable.
All these approaches had limited system topology
optimization, and did not incorporate different mod-
ule types into the problem. A new method is needed
to automatically design PVRO systems for an individ-
ual application and location.

1.3. Approach

This paper presents a computer-based modular
design method that will enable nonexperts to config-
ure the best PVRO system for a particular commu-
nity from an inventory of potential system
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components, as shown in Fig. 1. The inventory con-
sists of different motors, pumps, RO membranes,
energy recovery devices, and PV panels. Even for
small inventory, there are many possible system con-
figurations, or in other words, a large design space.
The approach first prunes the size of the design
space using filters based on fundamental engineering
principles to make the problem tractable. The algo-
rithm then performs an optimization on the reduced
design space using a genetic algorithm. The optimi-
zation routine employs a new, experimentally-
validated graph-based modeling approach to evaluate
different system configurations. This approach is
demonstrated using several sample cases with
various system scales and locations.

2. Modular design approach

2.1. Problem description

The problem considered is the design of a PVRO
desalination system for a remote community using an
inventory of modular components. It is assumed that
the systems are designed to operate variably to elimi-
nate the need for energy storage in the form of batter-
ies. Also, it is assumed that the system requirements,
such as the solar radiation, input water salinity, and
water demand for the community are well known.
Using this information, the algorithms can be used to
configure a custom system for the community, which
can be constructed from modular components by a
nonexpert.

2.2. Modular design approach overview

The optimization framework to configure PVRO
systems from an inventory of available modular com-
ponents is shown in Fig. 2. In this framework, a series
of different filters are used to systematically reduce
the size of the design space. The preliminary filters
use computationally efficient, simple tests to eliminate
inappropriate modules and subassemblies. The smal-
ler design space is then further refined by an assem-
bly level filter using relatively simple calculations.
Finally, a high-fidelity model is used on the fully
reduced design space to optimize the system and
determine the final PVRO configuration.

The PVRO system configuration is represented by
a series of discrete integer variables. In addition, the
equations which describe the system performance are
nonlinear. A genetic algorithm was selected to opti-
mize the final system configuration as they can easily
encode discrete variables and incorporate nonlinear
equations. Genetic algorithms are often the preferred
choice for topology optimization problems.

2.3. Design space example

To show the effectiveness of this approach, a
design space study for a modular PVRO inventory
was performed. For the simple inventory shown in
Fig. 3, where each color represents a different type of
component, a series of filters are applied to reduce the
size of the design space. To determine the initial
design space, it is assumed that each system must
contain at least one PV panel, one pump and motor,
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one RO membrane, and one energy recovery device
or pressure control valve. It is also assumed that the
required pressure vessels, connecting components,
and power control electronics are readily available.

Full presentation of combinatorics and the design
filters is beyond the scope of this paper, but the
reduction in the design space is shown in Table 1. The
size of the initial design space is approximately 10108.
By applying simple physical principles and con-
straints, the size of this design space is reduced to 107,
a design space size that is readily handled by an opti-
mization routine.

2.4. System optimization

The final step in the modular design algorithm is
to optimize the PVRO system over the reduced design

space. The system is represented by binary and
integer variables, making the optimization difficult.
This particular configuration can be easily incorpo-
rated into a genetic algorithm, which is used here.

The optimization routine is coupled to a detailed
system model, described below, to determine the most
cost-effective configuration that satisfies the water
requirements of a location. The design variables for
this problem consist of the component connections
(binary variables), number of components (integer
variables), and component types (integer variables)
(see Fig. 4).

3. System modeling

The final step in the modular design algorithm
requires a detailed system evaluation tool to imple-
ment a genetic algorithm optimization. In this model
structure, historical environmental datasets for the
water salinity and solar radiation for a given location
are used [18,19]. The datasets are used by models of
the PV and RO components to determine the system
performance. The PV and RO components coupled via
the system power.

3.1. Environment modeling

Knowledge of the local water conditions and solar
conditions are required to design a PVRO system for
a small community. During a design, the water salin-
ity and composition are determined using a water
assay. For the sample cases conducted here, the water
salinity and temperature are determined from the
World Ocean Database [19]. Average yearly values are
used for all sites.

Table 1
Design space reduction by modular design algorithm

Filter level Design space size

Component library �10108

Module level filter �1048

Subassembly level filter �1042

Assembly level filter �107
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Solar radiation varies greatly over the course of
the year, due to changing seasons and local weather.
To account for these variations, an average sunny day
and an average cloudy day are simulated for each of
the four seasons. The solar profile for the average
days are determined from typical year data from the
software Meteonorm [18]. The number of these typical
days is determined from the solar insolation using the
following relationship:

H ¼ nsun

ntotal

Hsun þ 1� nsun

ntotal

� �
Hcloud ð1Þ

where H is the average solar insolation in the season,
Hsun is the solar insolation on sunny day during the
season, Hcloud is the solar radiation on a cloudy day,
nsun is the number of sunny days in the season, and
ntotal is the total number of days in the season. The
average water production in each year can be deter-
mined by taking a weighed average of those values.

3.2. PV system modeling

The PV system model determines the power out-
put for a given solar profile, panel type, and number
of modules. The PV modules are assumed to be iden-
tical. Manufacturer’s data are used to describe the
panel’s dimensions, efficiency, and thermal properties.
Using these properties, the power produced by the
PV system is:

Psolar ¼ npanel gPVgelecGAPVð1þ aðTcell � 25ÞÞ½ � ð2Þ

where Psolar is the power produced by the PV system,
npanel is the number of PV panels, gPV panel efficiency
of the model considered, gelec is the efficiency of the
control electronics, G is the solar radiation, APV is
the PV panel area, a is the temperature coefficient of
the panel, and Tcell is the cell temperature. The cell

temperature can be estimated using the following
relationship:

Tcell ¼ Tamb þ GðNOCT � 20Þ
800

ð3Þ

where Tamb is the ambient temperature and NOCT is
the normal operating cell temperature of the model
being considered.

3.3. RO system modeling

The RO system model must determine the water
output flow rate and water quality for a given compo-
nent selection, system topology, pressure operating
point, power input, and input water salinity. A graph
is used to represent and analyze the RO system. The
RO system components and connecting pipes are
graph edges. Each edge has a type based on the com-
ponent it represents and associated equations which
govern the pressure, flow, and water concentrations.
An example system and its graph representation can
be seen in Fig. 5.

This approach has two advantages. It can easily
capture any RO system configuration using a node
adjacency matrix of zeros and ones and a vector rep-
resenting the system components, which is easily
implemented in a genetic algorithm optimization. It
also allows the system equations to be decoupled that
allows for an iterative solution approach.

The time required to compute the water output for
a single power setting takes on the order of seconds.
To compute the water output using a varying power
input for an average year would take more time, mak-
ing this approach infeasible for optimization. Fortu-
nately, the resulting system of equations, while
nonlinear, can be accurately approximated by interpo-
lating between evaluated function points. The result-
ing water production for a sample PVRO system is
shown in Fig. 6. To determine the water production of
a system, the graph model is generated and evaluated
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at eight different power inputs, and the function eval-
uations form a surrogate RO system model. This sur-
rogate model is then used for the solar profiles to
determine the water production of the combined
PVRO system.

3.4. RO system equations

The equations to determine the pressures, flows,
and concentrations in the RO network are written by
observing the flow of water through the network must
be conserved. Therefore, at each node:

X
input edges

Qi ¼
X

output edges

Qi ð4Þ

where Qi is the flow along edge i.
The salt must also be conserved throughout the

network. The salt conservation is applied at each node
as follows:

X
input edges

QiCi ¼
X

output edges

QiCi ð5Þ

where Ci is concentration of the water flowing along
edge i.

The changes in pressure and concentration
throughout the network are governed by the individ-

ual components. Full presentation of these equations
is beyond the scope of this paper. The RO component
equations can be found in [20].

3.5. Model verification

The PVRO system modeling approach is verified
using data from the MIT Experimental PVRO System,
shown in Fig. 7. The system schematic and model rep-
resentation are shown in Fig. 8. It is composed of a
tracking PV panel, custom control electronics, parallel
DC pumps, a Clark pump energy recovery system, RO
membrane within a pressure vessel, and plastic water
tanks. The system is equipped with custom control elec-
tronics and designed to operate variably to eliminate
the need for batteries. The system is fully instrumented
and computer controlled to optimize the system water
output, and is designed to produce approximately
350 L of fresh water per day in Boston on a sunny sum-
mer day. A full description of the system and compo-
nent characteristics can be found in [20].
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Data from a partly cloudy summer day are used to
validate the modeling approach. The solar profile
used as an input to the model is shown in Fig. 9 and
the water produced by the experimental system and
the model prediction is shown in Fig. 10. There is a
very good agreement between the data and model
values, with an error of less than 8%. This shows that
the graph modeling approach and the simplified anal-
ysis method accurately predict system performance.
These models are appropriate for use with the modu-
lar design approach.

4. Optimization examples

4.1. Economics

The objective of this design process is to minimize
the net present cost of the PVRO system assuming a

system life of 25 years and a 4% interest rate. Both sys-
tem capital costs and maintenance costs are consid-
ered. The system assembly costs and infrastructure
costs such as pre-treatment, land, site preparation,
water intake systems, brine disposal, and water distri-
bution system costs are not considered here. The com-
ponent costs for the case studies are based on
manufacturer’s and distributor’s prices. The average
replacement rates shown in Table 2 are used for used
to determine the lifetime system cost. A discussion of
the economic analysis equations is beyond the scope
of this paper, details can be found in [20].

4.2. Problem description

A series of sample cases are conducted to demon-
strate the approach. Systems are designed for four dif-
ferent locations with a seawater source and one
location with a brackish water source. The location
details are shown in Table 3. These locations provide
a range of different water salinities and solar insola-
tion values.

Systems are designed for different average water
demands, ranging between 1 and 20m3/day. To
accommodate this wide range of systems, a large com-
ponent inventory is constructed. Fig. 11 shows this
inventory. It consists of six different types of motors,
eight different types of pumps, eight different RO
membranes, eight different types of PV panels, two
different hydraulic motors, two different generators,

Fig. 9. Solar input for model validation.

Fig. 10. Experimental validation of modeling approach.

Table 2
Component replacement rates [21]

Component Lifetime (years)

PV panels 25

Control electronics 10

Membranes 5

Pumps 10

Motors 10

Energy recovery units 10

Table 3
Locations for PVRO modular design sample cases

Location Water
salinity
(ppm)

Average yearly
solar insolation
(kWh/m2/day)

Albuquerque, NM 3,000 5.79

Boston, MA 32,664 4.21

Brisbane, Australia 35,438 5.31

Cape Haiten, Haiti 36,275 6.05

Limassol, Cyprus 39,182 6.25
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Table 4
Optimization results for varied system scale

System size
(m3)

System stats System configuration Component details

1 Lifetime cost:
$13,906

Panel type 225W panels

Capital cost:
$6,686

Motor type 1 HP motor

Water cost:
$1.65/m3

Pump Type 300GPH vane Pump
Energy
recovery type

13% constant recovery ratio
pressure exchanger

Membrane
type

4´´ Diameter, 40´´ long, Dow
SWHRLE

5 Lifetime cost:
$59,258

Panel type 225W panels

Capital cost:
$27,654

Motor type 2� 0.5HP motor, 5HP motor

Water cost:
$1.44/m3

Pump type 1,000GPH feed pump,
450GPH piston pump,
1,000GPH boost pump

Energy
recovery type

Pressure exchanger

Membrane
type

8´´ Diameter, 40´´ long, Dow
SWHRLE

20 Lifetime cost:
$149,568

Panel type 295W panels

Capital cost:
$71,794

Motor type 2� 1HP motor, 15HP motor

Water cost:
$0.85/m3

Pump type 4,000GPH feed pump,
1,320GPH piston pump,
4,000GPH boost pump

Energy
recovery type

Pressure exchanger

Membrane
type

2� 8´´ Diameter, 40´´ long,
Dow SWHRLE

Fig. 11. Component inventory used for examples.
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five pressure exchange energy recovery devices, and
one pressure control valve. As was mentioned above,
the objective of the design is to minimize the 25-year
lifetime cost.

4.3. Varied system scale

In the first test, different scale systems were
designed for Boston, MA. The results for systems

which produce 1, 5, and 20m3 of water per day are
shown in Table 4. It can be seen that the system con-
figurations becomes more complex as the system scale
increases. The effect of economies of scale can be seen.
For the 1m3 system, the water cost is $1.65/m3. For
the 20m3 system, the water cost decreases to $0.85/
m3. This also demonstrates the modular design algo-
rithm is effective at designing systems of different
scales.

Table 5
Optimization results for 1m3 PVRO system in various locations

System location System stats System configuration Component details

Albuquerque
(Brackish
water)

Lifetime
cost: $10,074

Panel type 225W panels

Capital cost:
$4,953

Motor type 0.5HP motor

Water cost:
$1.08/m3

Pump type 140GPH Vane Pump

Energy
recovery
type

18% constant recovery ratio
pressure exchanger

Membrane
type

4´´ Diameter, 40´´ long, applied
membranes M-B4040AHF

Boston Lifetime
cost: $13,906

Panel type 225W panels

Capital cost:
$6,686

Motor type 1HP motor

Water cost:
$1.65/m3

Pump type 300GPH vane pump

Energy
Recovery
type

13% constant Recovery ratio
pressure exchanger

Membrane
type

4´´ Diameter, 40´´ long, Dow
SWHRLE

Brisbane Lifetime
cost: $11,954

Panel type 295W panels

Capital cost:
$5,965

Motor type 1HP motor

Water cost:
$1.32/m3

Pump type 300 GPH Vane Pump

Energy
recovery
type

8% constant recovery ratio
pressure exchanger

Membrane
type

4” Diameter, 40” long, Dow
SWHRLE

Limassol, Cyprus Lifetime
cost: $10,957

Panel type 225W Panels

Capital cost:
$7,324

Motor type 5HP motor

Water cost:
$1.24/m3

Pump type 300GPH piston pump

Energy
recovery
type

None

Membrane
type

4´´ Diameter, 40´´ long, Dow
SWHRLE

Haiti Lifetime
cost: $11,691

Panel type 295W Panels

Capital cost:
$5,623

Motor type 1HP Motor

Water cost:
$1.28/m3

Pump type 300GPH Vane pump

Energy
recovery
type

8% constant recovery ratio
pressure exchanger

Membrane
type

4´´ Diameter, 40´´ long, Dow
SWHRLE
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4.4. Varied system location

Table 5 shows the results for a 1m3 system
designed for different locations: Albuquerque, NM,
Boston, MA, Brisbane, Australia, Cape Haı̈tien, Haiti,
and Limassol, Cyprus. The configurations are similar
for most locations except for Limassol, Cyprus, where
an energy recovery device is excluded from the design.
Energy recovery devices, especially for small-scale
applications, are expensive. In Cyprus, there is an
abundant solar resource, making the power produced
by the PV panels less expensive. As a result, the most
cost-effective choice is a less-efficient system with more
PV panels. This is not an obvious choice and it would
be difficult for a nonexpert to capture this subtlety.

4.5. Result benchmarking

To demonstrate the effectiveness of approach, the
system designed to produce an average of 1m3 aver-
age in Haiti was simulated in Boston. The results for
this system are compared to a system specifically
designed for Boston. The system simulation for an
average spring day is shown in Fig. 12. The Boston
system produces 1.09m3 of water on the spring day,
where the system tailored for another location (Haiti)
only produces 0.69m3 of water.

Over the course of the year, the system optimized
for Boston is able to produce 1.03m3 of water per day
on average at a cost of $1.65/m3. For the system opti-
mized for Haiti produces 0.65m3 of water per day on
average at a cost of $1.97/m3. This suggests that the
algorithm is able to design a system that is best for a
location and demand.

5. Conclusions

This paper presents a design approach that can
enable nonexperts to configure PVRO systems for their
communities from an inventory of components to meet
the requirements of a particular location and water
demand. The approach is able to handle the very large
number of possible system configurations that exist for
a given inventory. It uses a computer-based modular
design algorithm to first limit the size of the design
space and then performs an optimization. The optimi-
zation uses an experimentally validated system model
to evaluate the system production. This algorithm is
shown to be effective, discovering different system
configurations are more appropriate for different loca-
tions. The method can be used in software tools to
enable nonexperts to configure PVRO systems for
small and medium-scale applications.

Acknowledgments

The authors would like to thank the King Fahd
University of Petroleum and Minerals in Dhahran,
Saudi Arabia, for funding the research reported in this
paper through the Center for Clean Water and Clean
Energy at MIT and KFUPM. The authors would like
to thank Leah Kelley, Elizabeth Reed, and Aditya Bhj-
ule for their assistance during this work. The authors
also acknowledge the Cyprus Institute for their partial
financial support of Amy Bilton.

References

[1] A.M. Bilton, R. Wiesman, A.F.M. Arif, S.M. Zubair, S. Dubow-
sky, On the feasibility of community-scale photovoltaic-
powered reverse osmosis desalination systems for remote
locations, Renewable Energy 36 (2011) 3246–3256.

[2] M.M. El-Halwagi, Synthesis of reverse-osmosis networks for
waste reduction, AIChE Journal 38 (1992) 1185–1198.

[3] N. Voros, Z.B. Maroulis, D. Marinos-Kouris, Optimization of
reverse osmosis networks for seawater desalination, Comput-
ers & Chemical Engineering 20 (1996) S345–S350.

[4] M.G. Marcovecchio, P.A. Aguirre, N.J. Scenna, Global
optimal design of reverse osmosis networks for seawater
desalination: Modeling and algorithm, Desalination 184
(2005) 259–271.

[5] Y. Saif, A. Elkamel, M. Pritzker, Global optimization of
reverse osmosis network for wastewater treatment and mini-
mization, Industrial & Engineering Chemistry Research 47
(2008) 3060–3070.

[6] F. Maskan, D.E. Wiley, L.P.M. Johnston, D.J. Clements, Opti-
mal design of reverse osmosis module networks, AIChE Jour-
nal 46 (2000) 946–954.

[7] N. Rutman, Automated design of modular field robots,
Mechanical Engineering, M.S. Thesis. Massachusetts Institute
of Technology, Cambridge, MA, 1995.

[8] S. Farritor, S. Dubowsky, N. Rutman, J. Cole, A systems-level
modular design approach to field robotics. in: IEEE Interna-
tional Conference on Robotics and Automation Proceedings,
1996, vol. 4, pp. 2890–2895.

Fig. 12. Comparison of two systems simulated in Boston.

A.M. Bilton and S. Dubowsky / Desalination and Water Treatment 51 (2013) 702–712 711



[9] G.S. Hornby, H. Lipson, J.B. Pollack, Generative representa-
tions for the automated design of modular physical robots,
IEEE Transactions on Robotics and Automation 19 (2003)
703–719.

[10] C. Leger, Automated synthesis and optimization of robot
configurations: An evolutionary approach. The Robotics Insti-
tute, Ph.D. Thesis, Carnegie Mellon University, Pittsburgh,
1999.

[11] J.R. Koza, F.H. Bennett, III, D. Andre, M.A. Keane, F. Dunlap,
Automated synthesis of analog electrical circuits by means of
genetic programming, IEEE Transactions on Evolutionary
Computation 1 (1997) 109–128.

[12] J.R. Koza, I. Forrest, H. Bennett, D. Andre, M.A. Keane, Auto-
mated WYWIWYG design of both the topology and compo-
nent values of electrical circuits using genetic programming.
in: Proceedings of the First Annual Conference on Genetic
Programming, MIT Press, 1996.

[13] J.D. Lohn, S.P. Colombano, A circuit representation technique
for automated circuit design, Evolutionary Computation,
IEEE Transactions on 3 (1999) 205–219.

[14] E.S. Ochotta, R.A. Rutenbar, L.R. Carley, Synthesis of high-
performance analog circuits in ASTRX/OBLX, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 15 (1996) 273–294.

[15] A. Garrard, E.S. Fraga, Mass exchange network synthesis
using genetic algorithms, Computers & Chemical Engineering
22 (1998) 1837–1850.

[16] D.R. Lewin, H. Wang, O. Shalev, A generalized method for
HEN synthesis using stochastic optimization––I. General
framework and MER optimal synthesis, Computers & Chemi-
cal Engineering 22 (1998) 1503–1513.

[17] B. Gross, P. Roosen, Total process optimization in chemical
engineering with evolutionary algorithms, Computers &
Chemical Engineering 22 (1998) S229–S236.

[18] Meteonorm V6.1. Bern, Switzerland Meteotest, 2011.
[19] T.P. Boyer, J.I. Antonov, H.E. Garcia, D.R. Johnson, R.A.

Locarnini, A.V. Mishonov, M.T. Pitcher, O.K. Baranova, I.V.
Smolyar, World Ocean Database 2005. Washington, DC.
NOAA Atlas NESDIS 60, US Government Printing, Office,
2006.

[20] A.M. Bilton, L.C. Kelley, S. Dubowsky, Photovoltaic
reverse osmosis––feasibility and a pathway to develop
technology, Desalination and Water Treatment 31 (2011)
24–34.

[21] A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic feasi-
bility of alternative designs of a PV-RO desalination unit for
remote areas in the United Arab Emirates, Desalination 221
(2008) 1–16.

712 A.M. Bilton and S. Dubowsky / Desalination and Water Treatment 51 (2013) 702–712




