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ABSTRACT

Numerous authors have reported the prediction of performance of heat pumps using artifi-
cial neural networks. However, the accuracy of the calculation is generally unknown. Four
feedforward networks with one hidden layer are developed and used in order to obtain coef-
ficient of performance (COP) prediction. COP permitted us to evaluate a water purification
process integrated into a heat transformer. For the networks, the logarithmic sigmoid (LOG-
SIG), the hyperbolic tangent sigmoid (TANSIG) and the linear (PURELIN) transfer function
were used. In the validation process, effects over regression coefficient, slope and intercepts
with different input normalization ranges were evaluated. Input normalization range from
�1 to 1 with TANSIG in hidden layer and without uncertainty in the input variables pre-
sented better results in comparison with other normalization ranges. However, Monte Carlo
method was also applied in order to obtain error propagation COP prediction (using relative
standard deviation, %RSDCOP), with the aim to determine confidence level of models. Effects
over %RSDCOP with different input normalization ranges were evaluated for the develop-
ment of four neural network models. Input normalization range from 0 to 1 with TANSIG in
hidden layer and with uncertainty in the input variables presented better results in compari-
son with other normalization ranges.

Keywords: Error propagation; Monte Carlo method; Logarithmic sigmoid; Hyperbolic
tangential

1. Introduction

Artificial neural networks (ANNs) have been used
in diverse applications such as robotics, pattern recog-

nition forecasting, medicine, power systems, manufac-
turing, signal processing, social/psychological science,
online state estimation and control of drying pro-
cesses, business, electronics, entertainment, oil and gas
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production, transportation, geothermometry, seawater
desalination system, processes to obtain drinking
water, and equation fitting in critical values. This
approach has also been used for the determination of
thermodynamic properties (LiBr–water and LiCl–
water solutions) and applications in energy processes
for their optimization [1–7].

Today, obtaining pure water is a serious problem
all over our planet. In this work, the water purifica-
tion system used was a distillation process in which
impure water is heated to obtain vapor that is imme-
diately condensed, yielding heat and pure water [8].
The absorption heat transformer is a system that con-
sists of a thermodynamic device capable of producing
useful heat at a thermal level superior to the one at
the source [9]. According to a number of published

papers, for example Holland et al. [8] and Santoyo-
Gutiérrez et al. [9], it is possible to combine the heat
transformer with a water purification process. This
combination enables us to increase the temperature of
the impure water system, and thus, purer water is
obtained.

There are four main components in the energy
cycle of an absorption heat transformer (Fig. 1): the
absorber (AB), the evaporator (EV), the generator (or
desorber) (GE) and the condenser (CO). Quality of
waste heat QGE is added at a relatively low tempera-
ture to the generator to vaporize the water from the
weak salt solution containing a low concentration of
lithium bromide. The vaporized water flows to the
condenser, delivering an amount of heat QCO at a
reduced temperature TCO. According to Rivera [10],

Fig. 1. Schematic diagram of the integration of the water purification process to an absorption heat transformer with
energy recycling. The continuous line (-) represents the absorption heat transformer, the dash dot (- · -) represents the
water purification process and the dotted lines (…) are the recycling energy.
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the liquid water leaving the condenser is pumped to
the evaporator, where it is evaporated using quantity
of waste heat QEV at an intermediary temperature
TEV. Next, the vaporized water flows to the absorber,
where it is absorbed in a strong salt solution coming
from the generator, and delivers heat QAB at a high
temperature TAB. Finally, the weak salt solution is
returned to the generator and the cycle is repeated. In
this type of energy cycle (absorption heat trans-
former), the coefficient of performance (COP) is a very
important parameter that defines the efficiency of the
heat transformer [8].

The COP is defined (Eq. (1)) by the ratio of heat
delivered in the absorber (QAB) to the heat load sup-
plied to the generator (QGE) and the evaporator (QEV).

COP ¼ QAB

QGE þQEV

ð1Þ

Siqueiros and Romero [11] proposed a water purifica-
tion system using an absorption heat transformer, in
which part of the total heat upgraded by the heat
transformer is recycled. In this system, the COP val-
ues are improved by energy recycling because part of
the heat is used to increase the heat source tempera-
ture. Siqueiros and Romero [11] reported COPWP for
water purification (WP) process with energy recycling
as follows:

COPWP ¼ COP

1� gCOP
ð2Þ

where

g ¼ DHv

Hv þHs
ð3Þ

The term g is the ratio of latent heat to the summation
of latent and sensible heat from the absorber.

Several thermodynamic models have been
reported for heat transformers. Huicochea and Siquei-
ros [12] presented theoretical results obtained with a
thermodynamic model to describe a water purifica-
tion process integrated into heat transformer using
different configurations while energy is recycled.
Also, Siqueiros and Romero [11] reported the increase
in COP for an absorption heat transformer. These
models involved analytical solution and global bal-
ances according to the physic and thermodynamic of
an absorption system. Likewise, in order to simplify
this complex system, ANNs have been used to
describe absorption systems. ANN models are recom-
mended by several authors to estimate the perfor-
mance of energy and thermal systems. Hernández

et al. [5,13] developed a forecasting model for a
water purification process integrated into an absorp-
tion heat transformer, using ANN for the online pre-
diction of COP. Hyperbolic tangential (TANSIG)
transfer function in the hidden layer has been used.
Also, Sozen et al. [14] proposed an ANN technique
as an approach to determine the exergy losses of an
ejector absorption heat transformer. Logarithmic sig-
moid (LOGSIG) transfer function has been used, and
comparison between conjugate gradient and Leven-
berg–Marquardt optimization methods was made by
the authors. Mohanraj et al. [15] used the ANN to
simulate a performance prediction of a direct-expan-
sion solar-assisted heat pump. Two neurons in the
input layer represent that a solar intensity and ambi-
ent temperature were used in order to predict power
consumption, heating capacity, energy performance
ratio and compressor discharge temperature, while
ten neurons were used in the hidden layer with
logistic sigmoid transfer function. Others methods to
predict performance of energy system are being
developed and these are compared with ANN
results. Esen et al. [16] compared an ANN to statisti-
cal weighted pre-processing (SWP) method with
ANN applied to predict the performance of a hori-
zontal ground source heat pump with R-22 for a
heating configuration. In the same flame of heat
pumps, Esen and Inalli [17] described the availability
of an Adaptive Neuro-Fuzzy Inference System
(ANFIS) and ANN models on vertical ground source
heat pump for cooling and heating configurations;
ANFIS is highlighted as more efficient in forecasting
performance that ANN using the minimum data set.
Studies of appropriate normalization range in the
input layer and confidence intervals of ANN models
are not presented in the literature. In many cases,
validation of the physical models (empirical or theo-
retical) is based on the simple comparison of the pre-
diction with the experimental results, without taking
into account the respective uncertainties. To remedy
this situation, appropriate confidence intervals of
COP for a heat transformer in water purification sys-
tems should be experimentally determined.

Traditionally, error propagation is determined
using equations proposed by Bevington and Robin-
son [18]. Error propagation from Monte Carlo
method represents an alternative that consists of a
repeated calculation of a quantity, varying each time
the input data randomly within their stated predic-
tion limits [19]. Anderson [19] described the Monte
Carlo method as inefficient due to its long calculation
time, but today due to the availability of fast com-
puters, application of this procedure is not a difficult
task.
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According to Rees [20], the standard deviation, r,
of a function of type:

y ¼ fðx1; x2 . . . ; xnÞ ð4Þ

is given by

r2
y ¼

Xn
i¼1

@y

@xi

� �2

r2
Xi ð5Þ

where rXi is the standard deviation of Xi and the vari-
able xi is independent.

Recently, Colorado et al. [21] demonstrated a way
to determine the error propagation of COP into an
absorption heat transformer for water purification,
using an ANN model. A correlation for %RSDCOP pre-
diction was developed based on introduced errors in
the input operation variables, however valid only for
the ANN architecture and a transfer function investi-
gated during the numerical studies.

Consequently, the objective of the present work
is to develop four ANN models without errors in
the input variables and evaluate the influence of
input normalization ranges and transfer functions in
the hidden layer to predict COP in the validation
process using statistical tools. Then, in this work,
different levels of errors were considered in the
input variables, with the aim to obtain standard
deviation of COP values and to find the most accu-

rate transfer function using the error propagation
analysis. These equations were obtained through
ANN from experimental data of the integration of a
water purification process into an absorption heat
transformer with energy recycling. An input variable
ANN was recaptured by Hernández et al. [13] for
COP prediction.

2. Experimental data

Fig. 1 shows a schematic diagram of the absorption
heat transformer integrated into a water purification
process. The absorber gives a useful heat quantity
QAB, produced by the heat transformer from the evap-
orator, condenser and generator [11].

Experimental database consists of different COP
values, obtained from a portable water purification
process coupled to an absorption heat transformer
with energy recycling. The experimental data set was
obtained at different initial concentrations of
LiBr�H2O, different temperatures in the absorber, the
generator, the evaporator and the condenser, and dif-
ferent pressures in the absorber and the generator. In
addition to the experimental data of each component,
the transitory and steady state were taken into
account for each initial concentration applied in the
process. Data were collected during 4 and 2h after
start-up. These parameter changes and data acquisi-
tion allowed us to obtain experimental information
that was sufficient to develop the neural network

Table 1
Experimental operation range conditions studies to obtain the COP values

Input Temperature (˚C) Limiting conditions studies Instrumentation label (see Fig. 4)

1 TinGE-AB 76.29–91.53 T1

2 TinEV-AB 74.56–89.93 T2

3 ToutAB-GE 84.31–98.27 T3

4 TinAB-GE 74.99–92.58 T4

5 ToutGE-CO 76.29–91.53 T5

6 ToutGE-AB 77.03–83.89 T6

7 TinCO 40.37–65.03 T7

8 ToutCO 26.77–33.79 T8

9 TinEV 28.52–85.33 T9

10 ToutEV-AB 74.56–89.93 T10

Concentration%

11 XinAB 51.66–55.36 X1

12 XoutAB 50.75–54.36 X2

13 XinGE 50.75–54.36 X3

14 XoutGE 53.16–56.07 X4

Pressure in Hg, (absolute)

15 PAB 7.00–11.50 P1

16 PGE 19.00–21.10 P2
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model [13]. A summary of the limiting-conditions
studies for the operation parameters used in the
experimental database is presented in Table 1.

The thermodynamic properties of the LiBr�H2O
mixture were estimated with Alefeld correlations cited
by Torres-Merino [23]. The input and output tempera-
tures of each component (AB, GE, CO and EV) were
obtained experimentally. At the same time the pres-
sure of two components (AB and GE) was registered
with a temperature-pressure acquisition system (ther-
mocouple conditioner and Agilent equipment with
commercial software). The input and output concen-
trations in the AB and GE were established by a
refractometer (refraction index). In this process, LiBr
+H2O was used as the working fluid in the absorber
and generator, while only H2O was used in the evapo-
rator and condenser.

Table 2 shows experimental information in a COP
range from 0.21 to 0.39. As many as 16 variables are
used and registered: 10 temperatures, 4 concentrations
and 2 levels of pressure.

3. Artificial neural modeling

ANN was used to predict COP in a water purifica-
tion system integrated into a heat transformer with
energy recycling. Four models are developed using
hyperbolic tangent sigmoid and logarithmic sigmoid
transfer function in hidden layer, considering linear
transfer function in output layer. Development of

these models was carried out without considering the
uncertainty in the input variables. Different normali-
zation ranges in the input variables were used to eval-
uate the effect over ANN prediction. Experimental
database is split into 50% for learning and 50% for
testing to get a good representation of the diversity of
the operating conditions. The coefficients of the net-
work (weight W and bias B) and the number of itera-
tions of the optimization algorithm are calculated
during the training stage, thus minimizing a root
mean square error (RMSE) between simulated and
experimental data. In this work, for the learning pro-
cess, we fixed the number of neurons in the hidden
layer as two. The optimum model is that which intro-
duces minimal error. In this research, Levenberg–Mar-
quardt method algorithm of optimization was used. In
the following section, four ANNs are developed and
described.

3.1. Logarithmic sigmoid function and input normalization
range between 0 and 1

A neural network with two neurons in the hidden
layer was found to be efficient in predicting the COP.
For this model, logarithmic sigmoid transfer function
in hidden layer and linear transfer function in output
layer were applied. Fig. 2(a) presents a comparison
between experimental and simulated COP values
using the learning and test database. The input nor-
malization range was 0 to 1 given by

Table 2
Some experimental data studies to obtain the COP values

k Input A B C D E F G

1 Tin.GE-AB 79.89 86.32 86.47 86.26 89.27 87.73 89.64

2 Tin.EV-AB 85.61 81.08 80.10 80.31 81.02 81.76 79.61

3 Tout AB-GE 91.52 96.79 95.82 94.67 96.31 94.08 95.10

4 Tin.AB-GE 88.00 88.43 88.36 88.31 87.85 87.95 89.12

5 Tout GE-CO 79.89 86.32 86.47 86.26 89.27 87.73 89.64

6 Tout GE-AB 81.78 81.69 81.85 81.82 81.65 81.25 82.51

7 Tin.CO 42.67 58.97 58.43 58.10 56.68 56.20 42.32

8 Tout.CO 30.45 32.54 32.74 32.93 33.14 33.24 28.52

9 Tin.EV 33.22 33.98 34.30 34.14 33.88 34.67 36.50

10 Tout.EV-AB 85.61 81.08 80.10 80.31 81.02 81.76 79.61

11 Xin.AB 55.25 55.25 55.25 55.25 55.25 55.25 55.31

12 Xout.AB 54.33 54.33 54.33 54.33 54.33 54.33 54.33

13 Xin.GE 54.33 54.33 54.33 54.33 54.33 54.33 54.33

14 Xout.GE 55.97 55.97 55.97 55.97 55.97 55.97 56.07

15 PAB 9.00 9.00 9.00 9.00 9.00 9.00 11.00

16 PGE 21.10 21.10 21.10 21.10 21.10 21.10 21.00

COPEXP 0.21 0.24 0.27 0.30 0.33 0.36 0.39
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/n ¼
/

1:01 �maxð/Þ ð6Þ

where / is the input variable (temperature, pres-
sure and concentration) and /n is the normalized
variable.

Comparison between experimental and simulated
COP values is made. As a result of this comparison,
the value of regression coefficient of learning and test-
ing database was of R= 0.9978.

The proposed model using logarithmic sigmoid
transfer function in hidden layer and linear transfer
function in output layer shown in Fig. 2(a) is repre-
sented by the following equation:

COP ¼
XS
s¼1

Woð1; jÞ½

� 1

1þ expð�1 � ðPK
k¼1 ððWiðj; kÞ � /nðkÞÞ þ b1ðjÞÞÞÞ

 !#

þ b2 ð7Þ

where s is the number of neurons in the hidden layer
(S= 2), k is the number of neurons in the input layer
(K= 16) and W and b are weights and biases, respec-
tively.

Fig. 2. (a) Experimental vs. simulated COP for all the
learning and test database using LOGSIG function in
hidden layer. (b) Experimental vs. simulated COP for all
the learning and test database using TANSIG function in
hidden layer.

Fig. 3. (a) Experimental vs. simulated COP for all the
learning and test database using TANSIG transfer-function
in hidden layer and input layer normalization from �0.9
to 0.9. (b) Experimental vs. simulated COP for all the
learning and test database using TANSIG transfer-function
in hidden layer and input layer normalization from �0.6
to 0.6.
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3.2. Hyperbolic tangent sigmoid and input normalization
range between 0 and 1

Fig. 2(b) presents a comparison between experi-
mental and simulated COP values using the learning
and testing database. For this model, hyperbolic tan-
gent sigmoid transfer function in hidden layer and
linear transfer function in output layer were applied.
The input normalization range is 0 to 1 as given by
Eq. (6).

Comparison between experimental and simulated
data of COP values was made. The obtained value of
the regression coefficient for learning and testing data-
base is R= 0.9943.

This second model is represented in Fig. 2(b),
which is described by the following equation:

COP ¼
XS
s¼1

Woð1; jÞ

� 2

1þ expð�2 � ðPK
k¼1 ððWiðj; kÞ � /nðkÞÞ þ b1ðjÞÞÞÞ � 1

 !
þ b2

ð8Þ

where s is the number of neurons in the hidden layer
(S= 2), k is the number of neurons in the input layer
(K= 16), and W and b are weights and biases, respec-
tively.

3.3. Hyperbolic tangent sigmoid and input normalization
range between �0.9 and 0.9

Here different ranges of normalization in ANN are
used. For this model hyperbolic tangent sigmoid
transfer function in hidden layer and linear transfer
function in output layer were applied. Fig. 3(a) pre-
sents a comparison between experimental and simu-
lated COP values using the learning and testing
database. The input normalization range is �0.9 to
0.9, as given by

/n ¼ 0:9
2/�maxð/Þ �minð/Þ

maxð/Þ �minð/Þ
� �

ð9Þ

Comparison between experimental and simulated
COP values is made, and the value of regression coef-
ficient of learning and testing database of R= 0.9967 is
obtained.

3.4. Hyperbolic tangent sigmoid and input normalization
range between �0.6 and 0.6

Fig. 3(b) presents a comparison between experi-
mental and simulated COP values using the learning
and testing database. For this model, hyperbolic tan-

gent sigmoid transfer function in hidden layer and
linear transfer- function in output layer were applied.
The input normalization range is �0.6 to 0.6, as given
by:

/n ¼ 0:6
2/�maxð/Þ �minð/Þ

maxð/Þ �minð/Þ
� �

ð10Þ

Comparison between experimental and simulated
COP values is made out, and the regression coefficient
of learning and testing is R= 0.9966.

3.5. Statistical test to confirm accuracy of four ANN
models

The statistical test of slope = 1 and intercept = 0 is
also carried out to confirm accuracy in all ANN mod-
els developed [24]. The four ANN models have con-
firmed the statistical test.

Tables 3 and 4 list the obtained parameters (Wi,
Wo, b1 and b2) to the four proposed models with two
neurons in the hidden layer in all ANN models. These
parameters are used in each proposed model to COP
prediction.

4. Error propagation determination

Error propagation calculation using Monte Carlo
method is a suitable alternative when the complexity of
the model is significant. The method (see Fig. 4) is based
on repeated calculations of COP prediction, changing
input data every time (16 input variables related to the
temperature, pressure and concentration, Fig. 4) by a
random selection from its error probability distribution.

Different instrumentations were used in the heat
transformer, according to operating conditions. In the
experimental work, according to Morales-Gómez [22],
the quantities measured directly were pressure and
bulk temperature. Therefore, several pressure meters
and thermocouples can be used in the instrument,
which operates under vacuum. Bourdon type, stain-
less steel 316 SS pressure meter was used, and its
uncertainty was estimated to be less than ±0.5% for
the full scale. The scale of the pressure meter was
762mm Hg to 30 psi. Measurements of thermocouples,
J type (iron-constantan), had an uncertainty of ±1.1˚C.
The quantity measured indirectly through refraction
index (refractometer Abbe type) was the concentration
of LiBr in LiBr +H2O solution. The scale of the refrac-
tometer was 1.300–1.700 and the measurement uncer-
tainty was estimated to be less than ±0.0002.

Table 1 shows the operational range for each vari-
able of the system. The location of the measurement
points of each instrument is shown in Fig. 4.
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As the uncertainty limits of instrumentation can
influence the accuracy of the COP calculation by the
Monte Carlo method, generating random numbers
from a normal distribution to evaluate the input vari-
ables in artificial neural network model. In this work,
the range reported for a parameter can be considered
equal to six standard deviations.

We used the relative standard deviation (%RSD)
for the error incorporated in the operation variables
(temperature, pressure and concentration). Relative
standard deviation is determined as follows:

%RSDinstrument ¼
100rinput

�xinput
ð11Þ

The error propagation in COP prediction by the
neural network model is defined by uncertainty lim-
its of instrumentation, its characteristics for predic-
tion and operation levels. A neural network consists
of a nonlinear model where the correlation structure
is very important. In this work, different levels of
uncertainty in the input layer of neural network were
used to determine effects over COP prediction uncer-
tainty.

The error propagation in COP prediction by the
ANN model is defined by uncertainty limits of instru-
mentation, its prediction characteristics and opera-
tional levels. The iterative model used to determine
error propagation has the following sequence:

Fig. 4. Schematic representation of analyzed uncertainties on ANN model by the Monte Carlo method.

Table 4
Weights (Wo, and biases b1 and b2) to the four ANNs models which COP predicts 2 hidden neurons (S= 2 and
input = 16)

LOGSIG; 0 to 1 TANSIG; 0 to 1 TANSIG; �0.9 to 0.9 TANSIG; �0.6 to 0.6

Wo Wo Wo Wo

0.1096 0.2961 0.1453 �0.0589 �0.4528 0.9319 �1.3653 �0.4169

b1 b1 b1 b1

84.3498 10.9363 0.3950 �0.1157

37.1894 198.6711 �0.0087 0.1091

b2 b2 b2 b2

0.0421 0.2606 0.4615 0.1711
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• Specify the uncertainty limit of the input layer
(temperature, pressure and concentration) of neural
network. Because the actual error estimates were
not available, we assumed two extreme cases for
instrumental measurement errors: (i) %RSD=1 and
(ii) %RSD=0.1. We considered the errors in case (i)
as “typical” errors, which might be representative
of a routine experiment of the heat transformer,
and those in case (ii) as typically obtainable errors
in well-designed experiments using high-precision
equipment [25].

• Generate random numbers with normal distribu-
tion from the average and standard deviation of
every operational variable.

• Simulate COP prediction with ANN model.
• Determine the standard deviation and average of

COP-predicted distribution.

5. Approximation analyses

This section describes the results obtained for each
neural network model and the obtained statistical
information in the validation process.

Analysis between ANN-simulated and experimen-
tal data is evaluated through the residual sum of
squares (RSS). The RSS is given by

RSS ¼
Xn
i¼1

ðCOPsim � COPexpÞ2 ð12Þ

Nonparametric statistical analysis based on the
absolute value of difference between experimental and
ANN-simulated frequencies was used. In this work,
the sum of residuals (Xi) is given by

Xi ¼
Xn
i¼1

ðCOPsim � COPexpÞ2
COPexp

ð13Þ

Table 5 shows the results with statistical tools. RSS
values to 0.0816 and the sum of residuals Xi= 0.2577
showed lower values for the ANN with TANSIG

transfer function in the hidden layer model in com-
parison with other cases that were evaluated. There-
fore, this option better adjusted the experimental data
to the proposed ANN model using a normalization
range from �1 to 1. The statistical results of the inter-
cept and the slope in the validation process confirm
the conclusion.

Consequently, an ANN model for a water purifica-
tion process integrated into heat transformer consider-
ing normalization range from �1 to 1, TANSIG
function transfer and two neurons in the hidden layer
is a good option to predict COP without uncertainty
in the input variables. In this analysis, for models
with TANSIG in the hidden layer, when the normali-
zation range is increased, the R values are increased,
RSS is decreased, and therefore, the Xi values and the
quality of validation are better. Afterward, we evalu-
ated the confidence level of the models using Monte
Carlo method for the error propagation in the predic-
tion.

6. Uncertainty analyses

Based on the above-mentioned mathematical
model (ANN) and the methodology showed in the
section Error propagation, a code has been developed
to determine standard deviation of predicted COP.
The code has been carefully verified using, whenever
possible, Bevington and Robinson [18] equations.
Excellent agreement is found between the average and
standard deviation.

The Monte Carlo method with 100,000 random
numbers and %RSDinstrument of 0.5 and a neural net-
work model are compared with experimental data
obtained by [22] in Table 6. Numerical prediction had
a discrepancy lower than 0.1% for LOGSIG with a
normalization range from 0 to 1, lower than 13% for
TANSIG with a normalization range from 0 to 1,
lower than 32% for TANSIG with a normalization
range from �0.9 to 0.9 and lower than 7.7% for TAN-
SIG with a normalization range from �0.6 to 0.6 with
regard to experimental results. Neural network model

Table 5
Statistical analysis between simulated and experimental data

ANN models RSS Xi R Intercept Slope

LOGSIG; 0 to 1 0.0835 0.2663 0.9978 0.0009 ± 0.0006 0.9972 ± 0.0021

TANSIG; 0 to 1 0.2166 0.6799 0.9943 0.0038 ± 0.0011 0.9885 ± 0.0033

TANSIG; �0.9 to 0.9 0.0816 0.2577 0.9979 0.0007 ± 0.0006 0.9975 ± 0.0020

TANSIG; �0.6 to 0.6 0.1280 0.4077 0.9967 0.0019 ± 0.0008 0.9943 ± 0.0026
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with Monte Carlo method exhibited a satisfactory abil-
ity for COP prediction for ANN models developed.
However, the model with TANSIG in the hidden layer
and normalization range from �1 to 1 presents a high
discrepancy between the predictions and experimental
COP (up to 31%). Especially, it is very interesting to
incorporate a standard deviation for each test (see

Table 6). Standard deviation for LOGSIG with a nor-
malization range from 0 to 1 is lower than 0.07, for
TANSIG with a normalization range from 0 to 1 is
lower than 0.045, for TANSIG with a normalization
range from -0.9 to 0.9 is lower than 0.134 and for
TANSIG with a normalization range from �0.6 to 0.6
is lower than 0.095.

Table 6
Comparision of simulated and experimental values of COP

A B C D E F G

COPEXP 0.2100 0.2400 0.2700 0.3000 0.3300 0.3600 0.3900

LOGSIG COPSIM 0.216 0.241 0.2664 0.2893 0.3183 0.3363 0.3523

0–1 ErrorCOP 0.0285 0.0041 0.0133 0.0356 0.0354 0.0658 0.0966

rCOP 0.0543 0.0601 0.0644 0.0661 0.0654 0.0631 0.0491

%RSDCOP 25.1388 24.9377 24.1741 22.8482 20.5466 18.7630 13.9369

TANSIG COPSIM 0.2371 0.2635 0.2868 0.307 0.3329 0.348 0.381

0–1 ErrorCOP 12.9047 9.7916 6.2222 2.3333 0.8787 3.3333 2.3076

rCOP 0.0309 0.038 0.0417 0.0433 0.0434 0.0422 0.0368

%RSDCOP 13.0324 14.4212 14.5397 14.1042 13.0369 12.1264 9.6587

TANSIG COPSIM 0.2129 0.2466 0.2730 0.2966 0.3289 0.3493 0.3790

�0.9–0.9 ErrorCOP 31.0476 27.8750 23.5925 19.1667 17.8787 13.5277 11.0769

rCOP 0.1266 0.1332 0.1336 0.1339 0.1337 0.1329 0.1238

%RSDCOP 46.0029 43.4017 40.0359 37.4545 34.3701 32.5177 28.5780

TANSIG COPSIM 0.2000 0.2216 0.2527 0.2797 0.3138 0.3375 0.3635

�0.6–0.6 ErrorCOP 4.7619 7.6666 6.4074 6.7666 4.9090 6.2500 6.7948

rCOP 0.0684 0.0688 0.0706 0.0722 0.0746 0.0761 0.0942

%RSDCOP 34.2000 31.0469 27.9382 25.8133 23.7731 22.5481 25.9147

Fig. 5. %Rsdcop against %RSDinstrument for all data base
with 100,000 random numbers using different functions in
the hidden layer.

Fig. 6. %Rsdcop against %RSDinstrument for all data base
with 100,000 random numbers using different normal-
ization range.
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Fig. 5 shows a %RSDCOP for each COPEXP with
variations in %RSDinstrument using LOGSIG and TAN-
SIG in the hidden layer of ANN. According to the
comparison in Fig. 5, the %RSDCOP decreases when
the COP increased. The first ANN model developed
with LOGSIG in the hidden layer presents %RSD up
to 38.3 for low COP values, whereas the second ANN
model developed with TANSIG in the hidden layer
with input normalization range between 0 and 1 pre-
sents %RSD up to 23.9 for low COP values. Neverthe-
less, the first ANN model with LOGSIG in the hidden
layer for high COP presents %RSD similar to the sec-
ond ANN model with TANSIG in the hidden layer
for low COP.

With the aim to evaluate the influence of the nor-
malization process in TANSIG transfer function over
error estimation COP, three different normalization
ranges were evaluated. According to Eqs. (6), (9) and
(10), input variables to ANN models were normalized.
Fig. 6 shows a %RSDCOP for each COPEXP with varia-
tions in %RSDinstrument using TANSIG in the hidden
layer of ANN and different normalization ranges. The
third ANN model developed with TANSIG in the hid-
den layer with input normalization range from �0.9
to 0.9 presented a %RSD up to 72.2 for low COP val-
ues. The fourth ANN model with input normalization
range from �0.6 to 0.6 presented a %RSD up to 92.2
for low COP. The reduction in the normalization

Fig. 7. Histogram of distribution using conditions for COPexp = 0.21. (a) using LOGSIG in the hidden layer, and
normalization range from 0 to 1. (b) Using TANSIG in the hidden layer, and normalization range from 0 to 1. (c) Using
TANSIG in the hidden layer, and normalization range from -0.9 to 0.9. (d) Using TANSIG in the hidden layer, and
normalization range from �0.6 to 0.6.
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range decreased the %RSD in the COP prediction. The
second ANN model developed with TANSIG in the
hidden layer and input normalization from 0 to 1 pre-
sented a %RSD up to 24 for low COP values.

Fig. 7 shows the distributions of COP simulated
with each ANN developed for COPexp = 0.21 (see test
A of Table 2). These conditions are selected as they
make more effective the discrepancy in COP simu-
lated with respect to a COP experimental (see Table 6).
Colorado et al. [21] described the output COP simu-
lates as a normal distribution. Nevertheless, in this
case, one statistical analysis based on tests to distribu-
tion is necessary for each output COP, aimed to deter-
mine whether output COP presented in each neural
model is normal or the other type (for instance, posi-
tive skew). In this way, open issues to improve this
comparison are given by a correct definition of %RSD
in function of other measures of central tendency (for
instance, mode). On the other hand, the equations pre-
sented in this work to evaluate normalization process
could be compared with those proposed by Khataee
and Mirzajani [26] in order to find an optimum nor-
malization range for the performance prediction of
heat pumps.

7. Conclusion

Four feedforward neural networks were obtained
and compared satisfactorily. For the comparison
without considering uncertainty in the input vari-
ables the ANN model with normalization range
between �1 and 1 and TANSIG function transfer in
the hidden layer represents a good option to predict
COP.

Error propagation from Monte Carlo technique
applied on COP prediction by ANNs in a water puri-
fication system integrated into an absorption heat
transformer has been successfully developed using
different transfer functions in the hidden layer and
normalization range. The Monte Carlo method
appears to offer a reasonable approach to the analysis
of error propagation COP with an efficient computing
complexity.

However, an ANN with TANSIG in the hidden
layer with input normalization range from 0 to 1 pre-
sents lower %RSD than other alternatives evaluated in
a water purification system integrated into an absorp-
tion heat transformer. An ANN with LOGSIG in the
hidden layer with input normalization range from 0
to 1 presents the lowest %RSD for high values of COP
and low values for RSS and Xi; therefore, it is an
advisable option. Error level is high for an experimen-
tal measurement for ANN models. Therefore, it is

important to work with a level less than 0.5 of uncer-
tainty in the instruments or a higher level of COPexp.
Normalization range of input variables influences the
%RSDCOP prediction. In this work, input normaliza-
tion range from 0 to 1 presented better results in com-
parison with other normalization ranges. Studies
about input and output distributions and those evalu-
ating error propagation of neural networks models are
necessary for other energy systems.

Symbols

b1, b2 –– matrix of bias

COP –– coefficient of performance

f –– transfer function for neural network

g –– transfer function (linear) for neural
network

H –– specific enthalpy, kJ/kg

IR –– refraction index

In –– input variable

K –– input number

LOGSIG –– logarithmic sigmoid transfer function

ns, n –– neurons in the hidden layer

Out –– output variable

P –– pressure, inHg

Q –– heat flow, W

R –– regression coefficient

RSD –– relative standard deviation

T –– temperature, ˚C

TANSIG –– hyperbolic tangential transfer function in
the hidden layer

TinCO
(cooling)

–– input temperature of cooling fluid in the
condenser, ˚C

ToutCO
(cooling)

–– output temperature of cooling fluid in
the condenser, ˚C

TinEV
(heating)

–– input temperature of heating fluid in the
evaporator, ˚C

ToutEV
(heating)

–– output temperature of heating fluid in
the evaporator, ˚C

X –– concentration, %w/w

x –– average

WP –– water purification

Wi, Wo –– matrix weight

Greek letters

/ –– operation variable

r –– standard deviation

Inlet variables for ANN

TinGE-AB –– input temperature in the absorber that
comes from the generator, ˚C

TinEV-AB –– input temperature in the absorber that
comes from the evaporator, ˚C

ToutAB-GE –– output temperature from the absorber
into the generator, ˚C

TinAB-GE –– Input temperature in the generator that
comes from the absorber, ˚C
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ToutGE-CO –– output temperature in the generator
toward the condenser, ˚C

ToutGE-AB –– output temperature in the generator
toward the absorber, ˚C

TinCO –– input temperature of the condenser that
comes from the generator, ˚C

ToutCO –– output temperature in the condenser
toward the evaporator, ˚C

TinEV –– input temperature in the evaporator that
comes from the condenser, ˚C

ToutEV –– output temperature in the evaporator
toward the absorber, ˚C

PAB and
PGE

–– pressures in the absorber and the
generator, respectively, inHg

XinAB –– LiBr input concentration to the absorber,
%w/w

XinGE –– LiBr input concentration to the
generator, %w/w

XoutAB –– LiBr output concentration to the
absorber, %w/w

XoutGE –– LiBr output concentration to the
generator, %w/w

Subscript

AB –– absorber

CO –– condenser

EV –– evaporator

EXP –– experiment

GE –– generator

i –– instrument

s –– sensible

sim –– simulated

MC –– Monte Carlo method

v –– latent
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