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ABSTRACT

During a seven-year time period (2000–2006), the data obtained by the monthly toxicological
analyses of raw (untreated) water from the main reservoirs supply sources of Athens, the
Greek capital with more than 4 million inhabitants, had been registered using a biolumines-
cence test, which is based on the correlation between toxicity of the water sample and its
effects on the light intensity of marine bacteria Vibrio fischeri, measured by the bioluminome-
ter Microtox�. The statistical analysis of the water toxicity over a long time period can
provide important and useful information for the management and quality control of the
water resources. However, due to the inherent characteristics of the water quality data,
sophisticated statistical techniques for their analysis may be required. In this study, the
available data were subjected to exhaustive statistical analysis by the usage of specialized
nonparametric statistical methods. A small amount of autocorrelation was observed for each
time series implying that corrective actions should be made in the statistical analyses. The
overall performance of the raw waters was apparently nontoxic. The study of seasonality for
each reservoir resulted in no statistical significance. Trend analysis resulted in no statistically
significant upward or downward trends. Moreover, no statistically significant differences of
the central tendency measures between the reservoirs were observed.

Keywords: Nonparametric statistical methods; Trend analysis; Seasonality; Autocorrelation;
Microtox� test.

1. Introduction

Surface water quality data may exhibit high
variability for many parameters. Therefore, a larger
sample size, based on the aggregation of many years

of monitoring results, increases the probability that
the distribution of a water quality parameter is appro-
priately represented, while reducing the influence of
anomalous observations. When calculating descriptive
statistics or testing for differences using data from
routine monitoring programs, it is recommended that
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three to five years of data be aggregated (pooled) [1].
However, in this case, it is assumed that there have
been no major changes in the water quality parameter
within the years that are being aggregated. Generally,
it is acceptable to aggregate three to five years of data.
Trend analysis should be used to confirm the absence
of a trend if longer periods of data are aggregated.

During the recent decades, there has been con-
stantly increasing concern for the quality of surface
water indented for human consumption. Ecotoxicolog-
ical monitoring is playing an increasingly important
role in the evaluation of water quality [2–5].
Ecotoxicology deals with potentially harmful effects of
man-made chemicals, released into biosphere, on
organisms in the receiving environments. Tradition-
ally the necessary tests involve the use of fish.
However, the use of fish in toxicity testing is expen-
sive and time-consuming, so alternatives are required.
Microbial tests have similar complex biochemical
functions to those of higher organisms. Generally, it is
assumed that there is a good correlation between the
toxicity determinations made by using Vibrio fischeri
and those made by using higher organisms such as
Daphnia and rainbow trout [6].

The Water framework Directive 2000/60/EC
refers to the determination of ecological quality of
surface waters in addition to the chemical profile.
Some European countries, such as Italy and Spain,
have legislations that ask for ecotoxicological analyses
also [7]. In Greece, only the Athens Water Supply &
Sewerage Company (EYDAP SA) systematically mea-
sured the toxicity of water during the time period
2000–2006. The Athens Water Supply & Sewerage
Company (EYDAP SA) is the water supplier of
Athens, the Greek capital with more than 4 million
inhabitants. The main supply sources of raw water
are the Mornos and Marathon reservoirs (artificial
lakes).

The aim of this study was to study the toxicity of
raw (untreated) water in the aforementioned reser-
voirs for a long time period. Particularly, differences
in population (differences between sites), monotonic
trends, and seasonality were examined. Since the dis-
tribution of surface water quality data is frequently
skewed by outliers, the assumptions of parametric
statistical tests are often violated. Therefore, more
sophisticated techniques including the consideration
of nonparametric statistical approaches are required
[8–10]. Nonparametric statistics do not assume a par-
ticular form of distribution (i.e. normal distribution),
and they can handle outliers that are common in
water quality data. In this study, the exploration of
the specific characteristics of the available data
imposed the appropriate selection and adjustment of

the statistical methods that were used in order to gain
the ultimate information.

In recent years, there has been increased interest in
analyzing trends in water quality parameters. In the
scientific literature, there are several studies on
surface waters e.g. [11–14]. However, to the best of
our knowledge, studies are mainly limited to physico-
chemical and chemical parameters of water, whereas
data obtained by toxicological analysis have not been
explored so far. Moreover, analysis of trends in any
water quality parameters of Greek surface waters
intended for human consumption has not been
implemented so far.

2. Materials and methods

2.1. Data description

Raw water samples from the reservoirs had been
collected on a monthly basis, over a seven-year period
(2000–2006). The samples were collected from the
water supply towers of the Mornos and Marathon
reservoirs. The data obtained by the toxicological anal-
yses had been registered using a bioluminescence test,
which is based on the correlation between toxicity of
the water sample and its effects on the light intensity
of marine bacteria V. fischeri (former Photobacterium
phosphoreum), measured by the bioluminometer

Microtox�. The bacteria V. fischeri have been used in
many tests for the toxicity of surface waters (e.g.
[4,15–17]). Toxic substances causing a disturbance to
the normal metabolism of the bacterium result in a
reduction of light output. The degree of toxicity is
proportional to the measured light loss.

Samples were adjusted to contain 2% w/v NaCl,
which provides osmotic protection for the marine
bioassay organism. The inhibitory effect of the test
sample after the contact time of 30min (H30) is an
expression of toxicity. This expression is given by the
following formula:

Ht ¼ ½ðIct � ITtÞ=Ict� � 100

where Ht is the inhibitory effect of the sample after
the contact time of 30min in %, ITt is the luminescence
intensity of sample after the contact time of 30min in
relative luminescence units, and Ict is the initial lumi-
nescence intensity of the control suspension in relative
luminescence units.

All the tests were carried out according to
standard protocols described in the Microtox Acute
Toxicity Users’ Guide [18]. The duplicate basic test
procedure was used. In duplicate testing, data quality
is improved through cross comparison. The average
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value from the two measurements is used in
subsequent calculations.

There is not an upper limit set by legislation for
the inhibitory effect of the raw water samples.
However, some authors consider that if it is higher
than 20% the water sample might be toxic to some
extent [19,20]. In that case, a further test that is based
on the determination of the sample concentration pro-
ducing a 50% (EC50 value) decrease in luminescence
compared to the control sample can be used for
confirmation of the initial screening test.

Every effort was made to ensure that samples
would be representative for the overall monthly toxic-
ity of water. The water supply towers have served as
the sampling points throughout the seven-year period,
while sampling dates and conditions were representa-
tive of each month.

Even the sheer number of observations and the
timescale of the survey may cancel out the effect of
possibly outlying samples. Moreover, statistical
techniques were used in this research to smooth out
the impact of outliers. Unfortunately, sampling of
water reservoirs includes field trips even in unfavor-
able conditions; therefore, more frequent sampling is
not always an option. Should more frequent sampling
data be available, average or median values could be
used as a measure of the monthly toxicity status of
water.

Sampling was conducted on a monthly basis dur-
ing the seven-year period with consecutive samples
taken approximately 30days apart during late
morning hours, between 09:00 am and 12:00 pm. Only
trivial deviations from that sampling scheme were
allowed, mainly as minor adjustments to guarantee
that the date of sampling would be representative of
each month.

The sample size (n= 84) is big enough in order to
make safe conclusions for the period under examina-
tion and conduct trend analysis.

The initial concentration during toxicity testing
was the same during all the tests. Samples were
prepared at nominal 100% solution (actually 91% after
Microtox Osmotic Adjustment Solution and finally
82% after addition in the reagent solution) in sets of
two in series.

2.2. Statistical analyses

Nonparametric methods are considered as “recog-
nized practice” in studies for detection trends in water
quality parameters [9,10,21]. Non-parametric methods
are proposed to be used systematically for detecting
trends in water quality parameters, whereas the
parametric methods (linear regressions) are proposed

to be used only when their use, in terms of distribu-
tional assumptions, is fully justified [10,21]. Besides,
the nonparametric tests, based on ranks, can be used
without prior knowledge about the kind of the trend
(linear or nonlinear) [22,23].

The nonparametric Mann–Kendall test for
trends involves computing a statistic S and its vari-
ance Var(S). Gilbert (1987) [24] notes that a minimum
sample size of 10 is normally required for the applica-
tion of Mann–Kendall test.

Even for sample size n= 10, under the null hypoth-
esis of the randomness of data against trend, the
quantity z, computed by the following equation, is
approximately standard normally distributed [23].

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp ; if S[0

0 ; if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp ; if S\0

8>>>><
>>>>:

The existence of positive autocorrelation in the
data can lead to the rejection of the null hypothesis
of no trend, while the null hypothesis is actually true
[25]. In order to eliminate the effect of autocorrela-
tion, methods such as “pre-whitening” [25,26] and
the most advanced “trend-free pre-whitening” [27]
have been proposed. In the case of seasonal data, the
seasonal Kendall test (a modified version of the
Mann–Kendall test) has been proposed [28]. The sea-
sonal Kendall Test requires a minimum of three years
of monthly data or 36 data points [24]. Simulation
studies have shown that when the data do not
present seasonality, the seasonal Kendall test is less
powerful than the Mann–Kendall test [29,30]. There-
fore, the data were tested for the existence of
autocorrelation and seasonality as well. Seasonality
was investigated by the nonparametric Kruskall–
Wallis test (nonparametric equivalent to one-way
ANOVA) [31] as well as the plots of the sample
autocorrelation functions. The “Kruskall–Wallis” test
requires the homogeneity of variances assumption as
well as the assumption of independence “within”
and “between” groups.

Due to the heterogeneity of variances, as an alterna-
tive to the common nonparametric Mann–Whitney test
(nonparametric equivalent to independent-measures
t-test; it assumes that the shape of the data distribution
is the same in each group), the nonparametric
“unequal variance t-test on the ranks of the data” was
used to test for differences in central tendencies
between the two reservoirs [32].
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3. Results and discussion

3.1. Preliminary data analysis

Descriptive statistics for the Ht data per reservoir
are presented in Table 1. The existence of negative val-
ues in the data can be attributed in the phenomenon of
hormesis [33]. Hormesis is a biological phenomenon
whereby an adaptive beneficial effect results from
exposure to a low dose of a chemical agent or environ-
mental factor that is damaging at higher doses. There-
fore, in the case that the samples contain pollutants in
very low concentrations, excitation of the photobacterium
is caused, resulting in the increase of the luminescence
intensity [34]. Herein, the overall performance of the
raw waters under examination is apparently nontoxic.

In order to eliminate the effect of outliers (Fig. 1)
and/or nonnormality, nonparametric techniques were
selected for further statistical analysis. Nonparametric
methods are less sensitive to outliers compared to
parametric methods.

3.2. Autocorrelation and seasonality

The time series plots of the Ht values per reservoir
(Fig. 2) did not present powerful clues for seasonality
since they do not have obvious circular patterns.
However, the existence or non existence of seasonality
was further examined.

In Fig. 3, the sample autocorrelation functions of
the data per reservoir are presented. The sample
autocorrelation function (ACF) provides important
information on the correlation between the pairs of
observations that are k units of time (lags) apart.
Generally, the existence of positive autocorrelation in
the twelfth lag of monthly water quality data declares
a circular behavior which is repeated each 12 months

Table 1
Descriptive statistics for the Ht data per reservoir

Marathon Mornos

Number of samples 84 84

Minimum value �34 �33

Maximum value 20 20

Median 3.36 1.05

Arithmetic mean 2.54 �0.35

Standard deviation 8.55 10.51

Skewness �1.004 �0.224

Standard error of Skewness 0.263 0.263

Kurtosis 3.447 0.151

Standard error of Kurtosis 0.52 0.52

Fig. 2. Time series plots for Ht per reservoir.

Fig. 1. Box plots of Ht per reservoir.
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(seasonality) [10]. Moreover, the existence of negative
autocorrelation in the sixth lag indicates an opposite
correspondence with data six months apart and also
declares one 12 month (seasonal) circle. Herein, the
form of the ACFs per reservoir (Fig. 3) implied the
lack of seasonality.

However, the diagrams of ACF on the data per
reservoir indicated the existence of relatively small
positive autocorrelation at the first lag. Consequently,
each observation is correlated with the previous one.
This means that a part of the information that is trans-
ferred by an observation has already been transferred
by the previous observation. Thus, the assumption of
independence is violated.

Due to the existence of even a small amount of
autocorrelation in the data, the nonparametric Krus-
kal–Wallis test for the exploration of seasonality was
carried out for the pre-whited time series data,
ðX0

t ¼ Xt � r1Xt�1 where Xt is the observation at time t
and Xt�1 is the observation of the previous time per-
iod and r1 is the autocorrelation at lag 1) for each res-
ervoir. The pre-whitening procedure was used in
order to eliminate the effect of autocorrelation and
achieve independency between groups. The values of
the sample autocorrelation function at the first lag
were 0.303 for Marathon and 0.314 for Mornos. The
Levene’s test for the homogeneity of variances was
not significant at a= 0.05 (Table 2). The Kruskall–Wal-

lis tests were not statistically significant (Table 3).
Thus, for each reservoir, the null hypothesis of the
equality of the monthly medians is not rejected at
a= 0.05. The lack of seasonality of the water toxicity
might be attributed to probably low values of the
parameters that could affect it and their possible slight
variation in the annual cycle.

3.3. Trend analysis

Despite the existence of autocorrelation, the
Mann–Kendall tests, without any prior correction for
autocorrelation, were not statistically significant for
both the reservoirs (Table 4).

The p-values of the tests were: 0.985 for Marathon
and 0.74 for Mornos. Therefore, there was no sufficient

Fig. 3. ACFs for Ht per reservoir.

Table 2
Levene’s test per reservoir (grouping variable: month)

Reservoir Levene statistic df1 df2 p-value

Marathon 1.030 11 72 0.430

Mornos 1.071 11 72 0.396

Table 3
Summary of the Kruskal–Wallis test per reservoir
(grouping variable: month)

Marathon Mornos

Chi-Square 6.114 13.781

df 11 11

p-value 0.866 0.245

Table 4
Summary statistics of the Mann–Kendall test for Ht per
reservoir

Marathon Mornos

Statistic (S) �6 87

Standard deviation of S 258.856 258.849

Z �0.019 0.332

p-value⁄ 0.985 0.74

⁄H0: there is no trend vs. H1: there is a trend.
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evidence to reject the null hypothesis of no trend for
both reservoirs at any of the ordinary levels of signifi-
cance. Moreover, there was no need to further investi-
gate the effects of autocorrelation on the Mann–Kendall
test [35]. Further examination of the structure of
autocorrelation, as a possible cause of an apparent
trend, would be necessary only in the case of rejection
of the null hypothesis of the Mann–Kendall test.

3.4. Differences between reservoirs

Due to a small amount of autocorrelation in the data
for each reservoir, observations within each group are
not fully independent. Serial correlation may affect the
results of tests for differences in measures of central
tendencies between the groups due to the underestima-
tion of the variations [36]. Therefore, any test for differ-
ences in measures of central tendencies between the
reservoirs should be performed for the pre-whited
time series. Prior to the application of such a test to the
pre-whited time series, the Levene’s test for the
homogeneity variances was used. Levene’s test was
significant at the a= 0.05 level of significance
(p-value = 0.001). Therefore, alternative to the Mann–
Whitney test, the “unequal variance t-test” was carried
out for the ranked pre-whited data. This test is
nonparametric and overcomes the violation of the
homogeneity of variances assumption which is
required by the Mann–Whitney test [33]. The p-value of
the test was found to be equal to 0.190. Therefore, at the
a= 0.05 level of significance, the inhibitory effect is not
statistically significant different between the reservoirs.

3.5. Discussion

This study comprises a first attempt to following
up the effect of raw water, intended for human con-
sumption, on V. fischeri for a seven-year period. The
characteristics of the V. fischeri results are also
revealed.

Toxicity tests using only a kind of organism
indicate the effect of the sample in this particular
organism. The assessment of toxicity on other organ-
isms belonging to different levels of the food chain
will allow a more comprehensive assessment of it.
However, only the monitoring and recording of data
using the same indicator organism allows comparison
of values [37]. Through the toxicological analyses, the
combined effect of toxic substances is detected. In the
case of elevated levels of toxicity, chemical analyses
are necessary to determine the problem. In order to
ensure the quality of raw water from the reservoirs
and the excellent water quality reaching consumers,
after the suitable treatment, the Quality Control

Department of EYDAP SA, complying with the
guidelines set by the European Council, has also been
registering systematically the physicochemical, chemi-
cal, and microbiological parameters regarding the
quality of water. Toxicological analyses are used as a
complementary approach to ensure water quality.

This study presents a framework for the explora-
tion of the particular characteristics of the V. fischeri
results for reservoirs’ water, intended for human con-
sumption, as well as an integrated statistical analysis
by means of selected appropriate nonparametric statis-
tical methods which can effectively handle particular
problems such as outliers and/or violation of distribu-
tional assumptions (limitations regarding the normal-
ity of data) for parametric ones, lack of the
homogeneity of variances assumption and moreover
they can be adjusted to overcome lack of data inde-
pendency due to autocorrelation. The methodology
described in this study can also be used for the assess-
ment of other water quality parameters, systematically
measured, in the reservoirs. However, when it comes
to the cases of reservoirs and/or water quality param-
eters that are affected by conditions that induce sea-
sonality, the method for trend analysis should be
suitably modified. In any case, the frequency of sam-
pling scheme should also be taken under consider-
ation as it may induce autocorrelation, implying
special remedies that have to be undertaken.

4. Conclusions

The statistical analysis of the raw water toxicity
over an extended time period can provide important
and useful information for the management, quality
control, and improvement of the water resources.
However, due to the inherent characteristics of the
water quality data, sophisticated statistical techniques
for their analysis might be required. In this study, the
data that were obtained from the monthly toxicologi-
cal analysis (monitoring time period: 2000–2006) of the
raw water from two reservoirs that supply Athens
were subjected to exhaustive statistical analysis by the
usage of specialized nonparametric statistical meth-
ods. A small amount of autocorrelation was observed
for each time series implying that corrective remedies
should be used in the statistical analyses.

Toxicity tests conducted on raw water samples
using the Microtox� system resulted in no evidence of
toxicity to the test organism V. fischeri. The overall per-
formance of the raw water from the two reservoirs was
apparently nontoxic and comparable to this one usu-
ally observed in drinking water after treatment [38].

The study of seasonality (based on Kruskal–Wallis
test) of the data for each reservoir resulted in no
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statistical significance. Trend analysis (based on Mann–
Kendall test) resulted in no statistical significant
upward or downward trends for both the reservoirs. In
addition, there was not observed statistically significant
difference at the measures of central tendency of
inhibitory effect between the two reservoirs.
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J. Namieśnik, Chemometric estimation of natural water samples
using toxicity tests and physicochemical parameters, Crit. Rev.
Anal. Chem. 37 (2007) 81–90.

[16] K.L.E. Kaiser, K.R. Lum, V.S. Palabrica, Review of field
applications of the Microtox test in Great Lakes and Saint Law-
rence river waters, Water Pollut. Res. J. Can 23 (1988) 270–278.

[17] K.L.E. Kaiser, J.M. Ribo, K. Kwasniewska, A Microtox Test
Survey of Lake St. Clair Water, Water Pollut. Res. J. Can. 23
(1988) 356–359.

[18] Microbics Corporation, Microtox� Manual, Carlsbad, CA, 1992.
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