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ABSTRACT

The degradation of methyl violet by Fenton treatment was modeled. A mathematical model
was tested by fitting experimental data and was compared with first-order and second-order
models. The results indicated that this mathematical model could better describe the kinetics
of methyl violet degradation by Fenton in the experimental research scope. In addition, the
effects of initial molar ratios of the Fenton reagents ([Fe(II)]0:[H2O2]0), pH, and some anions
(e.g. Cl�, SO2�

4 , and CO2�
3 ) on the Fenton degradation of methyl violet were discussed. The

results implicated that the greatest decolorization rate of methyl violet could be obtained
when the initial molar ratios of [Fe(II)]0 and [H2O2]0 was 1:3 and the optimum pH was 3.0.
The degradation of methyl violet was inhibited in the presence of anions, which can be
attributed to the fact that they were scavengers of �OH. And the negative impact of these

anions on the degradation rate followed the order CO2�
3 >Cl�>SO2�

4 .
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1. Introduction

Nowadays, dyes are widely used in many indus-
trial fields, such as textiles, plastics, paper, coatings,
and rubber [1], therefore existing widely in the efflu-
ent wastewater. Some of the dyes are stable to light
and oxidant and are resistant to biodegradation for
their complex structure [2,3]. Thus, the treatment of
dye wastewater has received global concern.
Advanced oxidation processes (AOPs) which are
based on the generation of the highly reactive hydro-
xyl radicals (�OH) have been proposed as an alterna-
tive method for treating refractory wastewaters [4,5].
�OH is a nonselective oxidant which can react with
most of the organic contaminants at near diffusion-

limited rates [6]. The Fenton system, comprised of
aqueous mixtures of ferrous iron (Fe(II)) and hydro-
gen peroxide (H2O2), represents one of the most
attractive AOPs [7]. Fenton’s regents are normally
innocuous to the environment with no by-products
dangerous to human and environmental health, and
Fenton’s processes are often related to the simple
equipment, mild operating conditions (atmospheric
pressure and room temperature), easy operation and
maintenance [8–10].

More recently, a number of studies have presented
chemical kinetic models to accurately predict the
species behavior, process performance, and efficiency
as well as to optimize operating conditions, and the
simulations can help to confirm the mechanism and
rates governing the Fenton reaction [11–14]. However,
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no model describes well the overall rate of the degrada-
tion of organics over a wide range of experimental con-
ditions (pH, Fe(II), and H2O2 concentrations) for the
complexity of the degradation pathway of organics and
the considerable uncertainties on the various equilib-
rium and kinetic constants of individual reactions [15].

Triphenylmethane dyes are widespread used as
colorants in industry and as antimicrobial agents in
medical and related biological sciences [16,17]. Methyl
violet, a basic triphenylmethane-type dye, is usually
used for textiles and gives deep violet colors in paint
and ink. This kind of dye in wastewater is toxic and
they present a health hazard to humans [16], and
great concern has arisen about the degradation of
methyl violet in wastewater. The number and variety
of studies for the removal of methyl violet were
undertaken including adsorption [18,19], photocataly-
sis by TiO2 [20] and K3PW12O40 [21], and biodegrada-
tion [22]. Nevertheless, few works have applied the
basic Fenton’s models to methyl violet oxidation for a
wide range of initial reagent concentrations. In this
paper, the mathematical model proposed by Chan
and Chu [14] was applied due to the fact that the
reaction mechanism and degradation trends of methyl
violet showed in the pre-experiments were consistent
with their results. In addition, the most common and
the simplest first-/second-order model [23–25] was
also used.

Some anions affected the degradation of organics
in wastewater. For example, halide ions (X�) are sig-
nificant �OH scavengers, for their forming of reactive
halogen species (X�, X��

2 ) [26,27]. El-Fass et al. [28]
have reported that the “common ion effect” due to the
presence of inorganic anions led to decreased p-elec-
tron (electrostatic) repulsion between two ionic dyes
hence increasing the degree of aggregation.

The primary objective of this work was to test a
mathematical model by fitting the experimental data
using this model and the first-/second-order model
over a wide range of experimental conditions. Initial
molar ratios of the Fenton reagents ([Fe(II)]0:[H2O2]0)
were varied from 1:0.33 to 1:3 at pH 4.0. Methyl violet
was chosen as the target organic compound. The
effects of initial molar ratios of the Fenton reagents
([Fe(II)]0:[H2O2]0), pH, and some anions (e.g. Cl�,
SO2�

4 , and CO2�
3 ) on the Fenton degradation of methyl

violet were discussed in this paper.

2. Materials and methods

2.1. Materials

All chemicals were reagent grade and used as
received. Methyl violet (C24H28N3Cl, MW: 393.96 g/

mol, CAS: 800-87-3) was purchased from Shanghai
Chemical Reagent Co. Ltd, and the stock solution
was prepared as 40mg/L in distilled water. FeS-
O4·7H2O (CAS: 7782-63-0) was purchased from Tian-
jin Kemio Chemical Reagent Co. Ltd and was
dissolved in an aqueous solution of 0.1mol/L
H2SO4 as Fe(II) stock solution. H2O2 (30%, CAS:
7722-84-1) was obtained from Tianjin Damao Chemi-
cal Co. Ltd. All stock solutions were stored in a
refrigerator at 4˚C in the dark and used within one
week. Milli-Q water (resistivity � 18 MX cm) was
used in all experiments.

2.2. Procedures and analyses

Experiments were carried out in a glass cylindrical
reactor of ca. 7 cm diameter and ca. 9 cm height, and
the reaction volume was 100mL. Reaction mixtures
were prepared by taking an appropriate amount of
methyl violet and Fe(II) stock solutions. The reaction
was initiated when the known amount of H2O2 was
added to the mixtures. The initial pH value of reaction
system was adjusted by HCl or NaOH solutions
(1mol/L) before adding H2O2 solution.

In Fenton experiments, samples were taken out at
the reaction time of 0, 1, 3, 5, 10, 15, 20, and 25min.
Because methyl violet shows the maximum absorption
peak at 575 nm, a UV–Vis spectrophotometer
(WFJ2100, Unico Co., Shanghai) was used to deter-
mine the absorbance of methyl violet at a wavelength
of 575 nm. The reaction solutions were always
magnetically stirred during 30min. In all the above
experiments, the temperature of the solution was
maintained at 25.0 ± 1˚C. All experiments were run in
duplicate. Because the reaction in the sample taken
from the reactor continued, the sampling and the
measurement of the absorbance should be completed
within 10 s.

The reaction rate and efficiency of methyl violet in
Fenton system is characterized by degradation rate
(%).

degradation rate ¼ 1� A

A0

� �
� 100%

where A and A0 are the absorbance of methyl violet in
reaction solution at time t (min) and zero,
respectively.

2.3. Kinetic modeling

Modeling results were generated using a mathe-
matical equation (Eq. (1)) proposed by Chan and Chu
[14], and straight lines with intercept q and slope r
were obtained by plotting t/(1�C/C0) vs. t (Eq. (2)).
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C

C0

¼ 1� t

qþ rt
ð1Þ

t

1� C=C0

¼ rtþ q ð2Þ

where C is the concentration of the probe (i.e. methyl
violet) remaining in the system after a reaction time of
t (min), and C0 is the initial concentration of the
probe. The q (min) and r (dimensionless) are two
characteristic constants relating to the initial degrada-
tion rate and the final oxidation capacity of Fenton
reaction. 1/q represents the initial methyl violet
removal rate in the process and 1/r represents the
maximum oxidation capacity of Fenton’s reagent.

The first-order model (Eq. (3)) and the second-
order model (Eq. (4)) can be expressed as:

ln
C0

C

� �
¼ k1t ð3Þ

1

C
� 1

C0

¼ k2t ð4Þ

where C and C0 are the same as above, k1 is the first-
order rate constant and k2 is the second-order rate
constant.

3. Results and discussion

3.1. Kinetic modeling on experimental data

In an effort to verify the applicability of the mod-
els, experiments were performed at different concen-
trations of [Fe(II)]0 and [H2O2]0 in solutions containing
10mg/L methyl violet at pH 4.0. The concentration of
Fe(II) was 0.01, 0.05, 0.1, 0.15, and 0.2mmol/L, respec-
tively. The experimental data were fitted using the
mathematical model, the first-order model, and the
second-order model, respectively. Fig. 1 shows the
results with the 1:3 initial mole ratio of [Fe(II)]0 and
[H2O2]0 fittings in linear forms of the mathematical
model of t/(1�C/C0) vs. t (Eqs. (1)–(2)) and the first-/
second-order models (Eqs. (3)–(4)). From Fig. 1, the
correlation coefficients (R2) ranging from 0.99 to 1.00
for fitting by the mathematical model were much
higher than those by the two simple order models.
And similar fitting tendency were observed in fitting
other experimental data in this work. The conformity
of the fittings demonstrated that the mathematical
model could better fit the experimental data than the
other two models; therefore, this mathematical model
could better describe the kinetics of methyl violet deg-

radation by Fenton reaction in this experimental
research scope. The good fitting could be related to
the facts that the reaction mechanism of methyl violet
removal is •OH attack and the degradation trends
include a rapid decay at the commencement of the
reactions and a much slower decay rate followed,
which are the two keys of the mathematical model.
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Fig. 1. The linear relationship of the methyl violet
degradation by Fenton reaction using the mathematical
model (a), the first-order model (b), and the second-order
model (c) ([Fe(II)]0 = 0.01mmol/L (j), 0.05mmol/L (�),
0.1mmol/L (N), 0.15mmol/L (H), 0.2mmol/L (�); pH 4.0;
[Fe(II)]0:[H2O2]0 = 1:3; [methyl violet]0 = 10mg/L; kmax =
575 nm).
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3.2. Effect of initial molar ratios of the Fenton reagents
([Fe(II)]0:[H2O2]0)

Fig. 2 shows the effects of different initial molar
ratios of [Fe(II)]0 and [H2O2]0 on the degradation of
methyl violet by Fenton’s reagents, which were varied
from 1:0.33 to 1:3 for fixed initial concentrations of
methyl violet of 10mg/L and pH 4.0. The results indi-
cated that the greatest decolorization rate was
obtained in the system when the initial molar ratios of
[Fe(II)]0 and [H2O2]0 was 1:3, regardless of the initial
concentration of Fe(II). And it can be seen from Fig. 2
that all the curves showed a rapid degradation in the
first few minutes and then reached a plateau. Hence,
the decolorization rate of methyl violet was greatly
influenced by the initial degradation rate. In addition,
the increasing initial Fe(II) concentration from 0.01 to
0.2mmol/L promoted ·OH formation and enhanced
the removal of methyl violet.

Table 1 presents the fitting parameters of the
model for Fenton degradation of methyl violet. 1/q
and 1/r at different initial Fe(II) concentration of 0.01,
0.1, and 0.2mmol/L and at constant ratio of 1:3 ([Fe
(II)]0:[H2O2]0) corresponded to the values of 0.02, 0.87,
and 4.35, and 0.24, 0.97, and 0.97, respectively.
Simulation results showed that 1/q and 1/r increased
with increasing Fe(II) dosage at fixed molar ratios of
the Fenton reagents. As expected, increasing both
concentrations of [Fe(II)]0 and [H2O2]0 resulted in
higher initial degradation rate and higher oxidation
capacity. It can be seen that the mathematical model
was better in explaining the conclusions from experi-
ments.

3.3. Effect of initial pH value of solution

The solution pH plays a very important part in the
degradation of organic compounds in Fenton system.
Fig. 3 shows the effect of initial pH in a range of
2–5.5 on the degradation of methyl violet for fixed ini-
tial concentrations of 10mg/L methyl violet,
0.2mmol/L H2O2, and 0.1mmol/L Fe(II). It can be
seen clearly from Fig. 3(b), the degradation rate
quickly increased when the initial pH increased from
2.0 to 3.0, subsequently it decreased when the initial
pH increased from 3.0 to 4.0 and then dropped off
sharply at pH values between 5.0 and 5.5. Below pH
3, Fenton reactions (5) and (6) slowed down because
of the forming of iron complexes as [Fe(H2O)6]

2+, [Fe
(H2O)6]

3+, [Fe(H2O)5OH]2+ which react more slowly
with H2O2 [29]. In addition, this behavior was also
attributed to the enhancement of •OH scavenging by
H+ (Eq. (7)) at pH 2.0 [30,31]. When the initial pH was
raised above 5.0, the coagulation of Fe(III) complex
molecules (Eq. (8)) inhibited the catalytic reaction of
redox cycling of Fe(II) [31]. Moreover, it can be seen
in Table 2, the mathematical model can well describe
the variation of the initial degradation rate and
maximum oxidation capacity at various initial pH by
1/q and 1/r. At pH 3.0, the degradation efficiency of
methyl violet was 96.5%, corresponding to the highest
1/q of 0.917 and 1/r of 1.01.

Fe2þ þH2O2 ! Fe3þ þ� OHþOH� ð5Þ

Fe3þ þH2O2 ! O��
2 þ Fe2þ þ 2Hþ ð6Þ

�OHþHþ ! H2O ð7Þ

Fe3þ þ 3OH� ! FeðOHÞ3 ð8Þ
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Fig. 2. Degradation rates of methyl violet with Fe(II)
dosages of 0.01 (a), 0.05 (b), 0.10 (c), 0.15 (d), and
0.20mmol/L (e) at different ratios of [Fe(II)]0 and [H2O2]0.
(pH 4.0; [methyl violet]0 = 10mg/L; kmax = 575nm).
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3.4. Effect of different anions and ionic strength

Inorganic anions (e.g. Cl�, CO2�
3 , and SO2�

4 ) occur
naturally in wastewater or may be added to facilitate
the dyeing process [32]. Fig. 4 shows the effect of
different anions including chloride, carbonate, and
sulfate ions on Fenton degradation of methyl violet
for fixed initial concentrations of 10mg/L methyl
violet, 0.4mmol/L H2O2, and 0.2mmol/L Fe(II). As
can be seen from Fig. 4, the degradation of methyl
violet was inhibited differently in the presence of dif-
ferent anions. It was attributed to the fact that these
anions were scavengers of �OH (Eqs. (9)–(11)). Pro-
duction of radicals such as OHCl��, CO��

3 , and SO��
4

which may be less reactive for methyl violet removal
than �OH lowered the amount of �OH during the
course of the reaction hence decreasing the decolor-
ization rate. The inhibited impact of these anions on
the degradation rate followed the order

CO2�
3 >Cl�>SO2�

4 (see Fig. 4). Grebel et al. [26] came

to a similar conclusion when examining the effects of
Cl�, Br�, and carbonates by UV/H2O2 treatment, that
the impact of these constituents on contaminant
destruction rate suppression at circumneutral pH fol-
lowed the order carbonates >Cl�.T
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Fig. 3. The effect of initial pH on Fenton degradation of
methyl violet. ([methyl violet]0 = 10mg/L; [H2O2]0 = 0.2
mmol/L; [Fe(II)]0 = 0.1mmol/L; kmax = 575 nm).

2540 X. Ou et al. / Desalination and Water Treatment 51 (2013) 2536–2542



Cl� þ � OH ! OHCl�� ð9Þ

CO2�
3 þ � OH ! CO��

3 þOH� ð10Þ

SO2�
4 þ� OH ! SO��

4 þOH� ð11Þ

Fig. 5 shows the effect of chloride ions in different
ionic strength on Fenton degradation of methyl violet
for fixed initial concentrations 10mg/L methyl violet,
0.4mmol/L H2O2, and 0.2mmol/L Fe(II). The degra-
dation rate decreased slightly with an increase in ini-
tial Cl� concentration from 0 to 5mmol/L and then
decreased sharply when the initial Cl� concentration
varied from 5 to 100mmol/L. It was attributed to both
the consuming of �OH by Cl� and the formation of
chlorinated hydrocarbons (RCl) in Fenton processes in
the presence of Cl� [27]. Meanwhile, higher Cl� con-
centration led to a decrease in the amount of �OH and
an increase in the generation of RCl. Therefore, the
increasing Cl� concentration promoted �OH consump-
tion and inhibited the degradation of methyl violet.

4. Conclusion

The experimental data were fitted using the mathe-
matical model, the first-order model and the second-
order model, respectively. The goodness of fittings of
the mathematical model demonstrated that it could
better describe the kinetics of Fenton reaction in this
experimental research scope. Meanwhile, the experi-
mental results indicated that the optimum initial
molar ratios of [Fe(II)]0 and [H2O2]0 was 1:3 and the
optimal reaction condition of pH was 3.0. The
degradation of methyl violet was inhibited differently
in the presence of CO2�

3 , Cl�, or SO2�
4 , and it followed

the order CO2�
3 >Cl�>SO2�

4 . And the degradation rate

decreased with an increase in initial Cl� concentration
in the presence of chloride ions in different
concentration.
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