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ABSTRACT

This paper analyzes the seasonal behavior of water quality in the reservoir of Rio Hondo
(Sali-Dulce river basin, Argentina) using Geographic Information Systems (GIS) interpolation
techniques. Due to its geographical location, the water of this lake is influenced by human
activities from the upper basin, such as agricultural development, urban and industrial
wastewater discharges which vary in intensity depending on the season. In this study the
techniques of interpolation IDW (Inverse Distance Weight) and Kriging were applied to val-
ues of a water quality index named ICA2. The integrated tool Geostatistics Analyst in Arc-
GIS 9.2 software was used to check if it is possible to get a proper ICA2 spatial interpolation
with the employed methods and which of them would be the best technique to estimate the
quality of water. With the observed and interpolated values of ICA2 index, a series of maps
were obtained that allow us to conclude that both methods are valid for estimating trends in
water quality. However, slightly better results have been obtained with the Kriging method.

CE Database subject headings: Argentina; Spatial analysis; Water quality; Reservoirs
Geographic Information Systems
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1. Introduction

Basin of the Rio—Dulce, Argentina, covers part of
the territories of the provinces of Salta, Tucuman,
Catamarca, Santiago del Estero and Cordoba (Fig. 1).

This basin is characterized in four sectors:
upstream or input, middle basin or area of use, zone

downstream, and seasonal floods and drainage area of
the basin (lake of Mar Chiquita), of which analyses
were performed only in the watershed upstream,
since it is where we found the activities (anthropo-
genic pollution: urban, industrial and agricultural
waste) that influence the variation in the quality of
reservoir water [1].

The Salı́ river basin covers 72% of the territory of
the Tucumán province. It consists of a dense network*Corresponding author.
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of drainage which collects the rainfall on the eastern
slopes of the mountain chain in the western region of
the province. The rivers from these mountains are the
main tributaries of the Sali river. The economic
activities are concentrated in this basin, and so the
provincial water resources represent the main source
of contribution to the provincial production. The
hydrological network has several important uses:
water supply, hydroelectric power production,
agricultural–livestock, and industrial uses.

The climatic type of the reservoir area, according
to the index Köpen, is semi-arid steppe—dry in
winter, hot in summer [1].

In this region, the rains are usually in summer,
contributing about 70% of the total annual rainfall [1]
and winter is the dry season.

The flow of the rivers in the basin depends
mainly on the rainfall. The maximum flow rates are
recorded during the months November–April
(summer season in the Southern Hemisphere so, late
spring–summer–early in the autumn) and are lowest
from May to October (late autumn–winter–early in
the spring). The lower flow period coincides with the
period of greatest industrial activity and therefore,
with the higher levels of discharge of industrial efflu-
ents. The main industrial activities in the province
are those related to sugar and citrus production,
beginning approximately in May and ending in
November.

At the begining of the raining season, the flow of
the Salı́ river sweeps the discharges of organic origin
to the inside of the reservoir.

This paper has been based on the data of
physico-chemical and biological parameters of water
samples at different points of the water mass in the
Rio Hondo reservoir. In the studies by Werenitzky,
[1,2] these data have been analyzed statistically and
have been used to obtain water quality indexes.
Comparative analysis of the performance of each index
was done to identify which of them best described the
condition of water quality. The water quality index
ICA2 was selected as the one that best describes the
state of water in each season for which data are
available [3].

In the study reported here, ICA2 data in each
season have been used to estimate values of the index
in locations where data is not available, employing
several interpolation techniques with the help of a GIS
(Geographic Information System).

There are studies related to the effectiveness of the
interpolators applied to the same data-set [4–8],
studies related with the interpolation techniques
applied to physical characteristics of land [9] or to
digital elevation models of the terrain (MDET) [10].
Besides, in recent studies GIS is applied to the spatial
distribution of water quality, both in rural areas [11]
and in urban water use [12]. However, we believe that
there is not much research about performance of dif-
ferent interpolation methods in surface water [13].

The interpolation techniques used in this study are
IDW (Inverse Distance Weighting) and Kriging. They
were chosen as they are the most commonly used in
analysis of spatial variation [14]. From a theoretical
point of view, kriging method is highly recommended

Fig. 1. Location map of the study area.
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for inclusion in GIS [15]; but some authors note that,
in practice, its effectiveness is comparable to the other
methods—that are more simple and with less
computational requirements [7,9]—like the IDW
interpolation method.

In this case, the comparison of IDW and kriging
methods applied to ICA2 values has led to
identification of the method that provided a seasonal
sequence of maps which best depict the water quality
distribution in Rio Hondo.

The interpolation methods have been applied with
ArcGIS and Geostatistical Analyst extension (GA),
which allow exploratory data analysis and the
application of deterministic and geostatistical methods
for obtaining interpolation surfaces. To verify the
goodness of fit of each method and therefore to
compare both, GA provides the prediction errors of
each method [16]. To this aim, the prediction errors
were also analyzed statistically to verify compliance of
linear hypotheses.

The objectives were: (1) to determine the spatial
distribution of ICA2 obtaining water quality surfaces
by interpolation using two methods, IDW and Kriging
that allow ArcGIS tool; (2) to compare the two
methods to determine the method that best describes
the water quality in Rio Hondo; and (3) finally, to
obtain the sequence of more accurate maps of quality
for each season of the year for which data are
available.

2. Materials and methods

2.1. Data and description of study area

The initial data correspond to the physico-chemical
parameters for monitoring water quality stipulated by
the Secretarı́a de Recursos Naturales de la Nación
(Ministry of Natural Resources of the Nation) to the
concessionaire for the operation and management of
the hydroelectric plant of Rı́o Hondo in the province
of Santiago del Estero. The data collection was done
during the years 1995, 1996, 1997, 1998, 1999 and part
of 2000, in months in which there are problems with
water quality, i.e. winter, spring, and summer seasons.
So, there was no sampling in autumn.

The situation of the sampling points in Rio Hondo
reservoir was georeferenced using ArcGIS 9.2 software
and then the values of water quality index ICA2
calculated previously were assigned. Werenitzky [1]
analyzes several water quality indices and the best
index to describe the variation of water quality in Rio
Hondo was ICA2. So, it was selected to this study.

The dam or reservoir of Rio Hondo has an average
depth of 5m and an approximate surface of

33,000 hectares. The ratio volume/surface is 1,740 hm3/
33,000 ha, according to data registered by the Regula-
tory Body Safety of Dams (ORSEP) under the Ministry
of Public Works, Argentina.

Sampling points were in accordance with general
rules for sampling with multiple objectives of a reser-
voir. The literature [17,18] suggests a minimum of
three sampling points: one at the top, one in the mid-
dle and a third near the dam, i.e. in the tail, body, and
head of the reservoir. Also, the points of the mouths of
the tributaries were taken into account [19]. In this
case, one sample point in the tail (no. T16), four in the
body (points no. T1, T8, T10, T17) and six in the head
(point no. T2, T9 and points of mouth of tributaries T3,
T4, T5, T7) have been considered. The sampling dates
were decided based on the time of year during which
most of the contributions of anthropogenic waste
(industrial and agricultural) take place in each season
of the year. The interpolation techniques allow us to
represent the approximate state of quality of the water
body at each time sampled on a continuous basis.

2.2. General procedure

First, an exploratory data analysis was done to
check normality of ICA2 data by a normal QQ-plot.
From the data-set at each season, ICA2 interpolation
techniques were applied to obtain continuous
surfaces by estimating the unobserved values
(predictions) of the variable under study.
Interpolation techniques employed are IDW and
Kriging. An analysis of errors was done to compare
both the methods. This analysis was to test the lineal
hypothesis: zero mean, constant variance, and
independence. The Mean Square error (MSE) of each
method also served to verify the goodness of fit of
each one. The lowest MSE is the best interpolation
technique.

The selected interpolation method was used to
obtain water quality maps of each season for which
observed data were available (no data in autumn).

2.3. Spatial interpolation methods

Interpolation is the estimation of Z values of a
surface at an unsampled point based on the known
Z values of surrounding points [20]. In this case, the
Z values are the ICA2 data.

2.3.1. Inverse of distance weighted (IDW) method

IDW is a deterministic local method and
interpolates values giving more weight to the values
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of closest stations and less to those that are farthest
away. To predict the value of a nonsampling site, the
values of the measured points around the place that
has to be predicted are used. Hence, it is considered
that each weight is inversely proportional to the
distance of the point being estimated [21].

The expression of the model is:

ZðS0Þ ¼
XN
i¼1

k � ZðSiÞ

where Z (S0) is the estimate value for the site S0; N is
the number of sampling points around of unsampled
point and whose value is going to estimated; k is the
weight assigned to each sampling point—these
weights decrease with distance; and (Si) is the
observed value at site Si.

The expression to calculate the weights is:

ki ¼ d
�p
i0 =

XN
i¼1

d
�p
i0

with di0 being the distance between the unsampled
site S0 (whose value is to be estimated) and each
sample site, Si. As the distance increases, the weight is
reduced by an exponent p. That is, while increasing
the distance between sampling points and estimated
points, the weight ki of sample point used to predict
will decrease exponentially.

Another important issue of the IDW technique is
determination of the number of neighbors to take into
account when calculating the predicted value. This
will depend on the type of data and the surface that
is sought. Therefore, the area calculated using the
weighted average IDW will depend on the parameter
p and the neighborhood search strategy.

The two parameters (ki and p) are chosen
optimally according to a minimum root mean square
error (RMSE) criterion [22].

Kriging method. Kriging is a geostatistical
interpolation technique that utilizes the statistical
properties of the measured points. This technique
estimates values at nonsampled locations using
weights that reflect the correlation between data at
two sampled locations or between a sample location
and the location to be estimated [23]. This method
provides a measure of error of estimates, which is also
an indicator of the goodness of fit and predictions.

This procedure provides the best linear unbiased
estimator (BLUE) of the variable under study. It is

“linear” since the estimated values are weighted linear
combinations of the available data. It is “unbiased”
because the mean of error is 0. It is “best” since it
aims at minimizing the variance of the errors.

ZðuaÞ ; a ¼ 1; 2; . . .N

where ua denotes the sampled points with information
about studied variable Z and Z�ðuÞis the estimation of
unknown Z(u) from Z(ua).

The basic approach of the estimation by Kriging is
considering ZðuÞ as a linear combination of
observations (in this case, values of ICA2)

Z�ðuÞ ¼
XN
a¼1

kaðuÞZðuaÞ

This method uses variogram to express the spatial
variation and it minimizes the error of predicted
values which are estimated by spatial distribution of
the predicted values. So, the weights are chosen on an
approach which considers that this estimate is
optimal. The optimal weights, ki, should produce
unbiased estimates,

E½Z�ðuÞ � ZðuaÞ� ¼ 0

and have errors with a minimum variance

var½ZðuÞ � Z�ðuÞ� ¼ min

The difference between Kriging and other linear
estimation methods is its aim of minimizing the error
variance. Kriging is distinguished from IDW and
other interpolation methods by taking into
consideration the variance of estimated parameters.

2.4. Validation of the interpolation methods

The validation of the interpolation methods was
performed using analysis of errors. The statistical
analysis used for estimation errors of stochastic models
such as Kriging, is applied, by extension, to the IDW
model to facilitate comparison of both interpolation
methods.

The chosen model can be validated by
interpolating observed values. So if n observations Y
(xi); i = 1, …, n are available, the validation process
proceeds as follows:
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For each j, j = 1, …, n discard point (xj; Y (xj));
estimate the Y�ðxjÞ by solving the IDW or the Kriging
system having set x0 = xj and using the remaining
points xi, i – j for the interpolation; evaluate the
estimation error ej ¼ Y�

j � Yj.

The model can be considered theoretically valid if
the error distribution is approximately gaussian with
zero mean and unit variance (N(0; 1)), i.e. satisfies the
following:

Zero mean,

1

n

Xn

1

ei ¼ 0

The estimation variance r2i is coherent with the
error standard deviation:

1

n

Xn

1

Y�
i � Yi

r2
i

� �2

ffi 1

Besides, under linear hypothesis r2i ¼ r2 ¼ cte.
Also, it is interesting to look at the behavior of the

interpolation error at each point, using mean square
error (MSE) of the vector ej:

MSE ¼ 1

n

Xn

1

e2i

and its root (RMSE).

3. Results and discussion

The IDW and Kriging methods were applied to
ICA2 values of each season. The exploratory data
analysis of ICA2 at each season provides the
QQ-plots. It is possible to assume normality of data in
all cases. Kriging methods work best if the data are
normally distributed.

The maps—obtained by applying the interpolation
methods IDW (Fig. 2) and ordinary kriging (Fig. 3)
to the distribution of water quality in each
season—were interpreted according to climatic char-
acteristics and human activities upstream, in each
season.

As specified in the introduction, in this region the
rainy season is during summer which contributes 70%
of the total annual rainfall [1] and winter is usually
dry.

The gradient of quality from the mouths of the
rivers to the retaining wall of the dam is evident.

The index values are increasing, for example, from
Sali river to dam wall. In winter, the index shows
minimum values at the mouth in the reservoir of
Salı́, Marapa, and Gastona rivers because they carry
the waste from the sugar industry, which began the
harvest in Tucumán at the end of autumn. Coincid-
ing with the dry season (early autumn in May to
October, beginning of spring), the pollution load of
rivers increasesas its volume decreases. This results
in an extreme pollution (the green in spring and
summer) in the area of the mouths. In late spring
and early summer, with the first rains as well as the
cessation of discharges by the end of the harvest,
the eutrophication process is stopped by a dilution
effect on the pollutants and water clarity. This
process is spatially better represented in Fig. 2 than
in Fig. 1.

3.1. Results of analysis of errors

Table 1 shows the statistical summary of the errors
obtained with each method. The values provided by
the GIS (means and standard deviations) have
been arrived at by applying a statistical software
(Statgraphics Plus 5.1).

The statistical summary includes measures of
central tendency, variability, and form. Since the
measured data are normal, we can see that the values
of skewness and kurtosis of residuals are within the
range between –2 and+ 2, so there is no significant
deviation from normality in any of the three cases.
The same conclusion is obtained by the chi-square test
of goodness of fit. It cannot be rejected by the
hypothesis of normality at 95% confidence (p values
greater than 0.05).

Independence of the errors is checked using the
Box-Pierce test. It is based on the sum of the squares
of the first 10 autocorrelation coefficients. The p-value
for this test is greater than 0.10. So for a 90% or higher
confidence level, it cannot reject the null hypothesis
that the data are random.

The hypothesis that the average error in each case
is zero, is verified with a t-test which does not reject
the null hypothesis (p-value > 0.05) in any of the six
cases.

Homoscedasticity requires that the variance of the
errors is constant for all values. This condition may be
analyzed using graphs of the distribution of errors
about the zero mean. If there is a uniform dispersion
of 18 data points about the zero line, it would be
possible. To avoid any doubt that the observation of
such graphics sometimes produce, they have been
divided into two subsamples of 18 values of 9 values
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Fig. 2. Maps of distribution of estimated values of ICA2 with IDW interpolation method.

Fig. 3. Maps of distribution of estimated values of ICA2 with kriging interpolation method.
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each, and each station is ranked by matching the
variances of each subsample in it, using a test of the
F. In all cases, the p-value > 0.05 and so the null
hypothesis of equal variances of the two sets of values
in each sample of errors for each station cannot be
rejected.

In Table 2, the average of square error is recorded
for each station and methodology. The MSE is a
measure of error that is most used to assess the
adequacy of the models in the GIS [24].

By analyzing the estimation error of each method,
their average error was found to be next to zero, in
both the methods. With respect to MSE, the method of
higher goodness of fit to the phenomenon studied is
the one that has a lower MSE. Therefore, although the
difference of the average square values does not
discriminate specifically between Kriging and IDW in
the three seasons, it is the Kriging method which
obtains lower values i.e. a better fit than the IDW
model.

In the estimation of water quality, there are a few
known studies that compare different interpolation
techniques. The de la Mora’s study [25] compared the
performance of three interpolation methods using a

Water Quality Index (ICA) in a water body whose
interest was the water supply to a metropolitan area.
This study was one of the first attempts to assess the
spatial variation of an ICA by ordinary kriging (KO)
as a stochastic interpolation technique in addition to
the comparison with other deterministic interpolation
methods.

In this paper, after analyzing the goodness of fit of
both the interpolation methods, the Kriging method
has been proved to be the most suitable to describe
the seasonal trend in water quality through maps of
the Hondo River Reservoir.

4. Conclusions

By comparing the IDW deterministic method and
kriging geostatistical method, it can be observed that
the values were not very different in terms of
prediction error. But we found that the Kriging
method presents a best fit and a better depiction of
the seasonal variation of water quality in the Rı́o
Hondo reservoir. This conclusion is similar to the
results of other relevant studies.

Graphic analysis of the sequence of water quality
mapsof Rı́o Hondo reservoir shows a low water
quality in all its seasons—with higher quality in
winter and lower quality in summer. On the other
hand, the quality of the reservoir decreases from
northeast to southwest, due to the discharge
upstream, and this phenomenon is common in every
season. The temporal evolution of Rı́o Hondo
reservoir quality is accordance with the industrial
processes that occur upstream.

In the Hondo River reservoir, the pollution
problem posed by the influence of human activity
requires analyses of spatio-temporal variation and this
study is a contribution to the representation of the

Table 1
Statistical summary of errors from IDW and Kriging method

Statistics IDW error
winter

IDW error
spring

IDW error
summer

Kriging error
winter

Kriging error
spring

Kriging error
summer

Frequency 18 18 18 18 18 18

Mean �0.098 �0.657 �0.410 �0.224 �0.194 �0.408

Standard
deviation

8.674 9.499 7.490 7.262 8.470 7.098

Minimum �17.82 �16.06 �11.01 �15.63 �12.44 �9.79

Maximum 13.44 16.18 15.4 14 18.04 16.52

Skewness �1.012 0.256 1.020 �0.785 0.764 1.592

Kurtosis �0.16 �0.74 �0.27 0.51 �0.27 0.55

Table 2
MSE for each method

Interpolation method/
parameters

Prediction
error: IDW

Prediction
error:
Kriging

Mean MSE Mean MSE

Winter �0.84 8.53 �0.23 7.06

Spring �0.66 9.26 �0.19 8.23

Summer �0.41 7.29 �0.41 6.91
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problem that can help policy-makers and managers of
the area.
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