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ABSTRACT

The experimental design and response surface methodology were applied to optimization of
the sonophotocatalytic degradation of Chloroform. The sonophotocatalytic reactions were
mathematically described as a function of parameters such as Chloroform concentration, UV
intensity, and TiO2 concentration using the Box–Behnken method. Statistical analysis showed
that the responses of Chloroform removal in sonophotocatalysis were fitted to linear interac-
tion effect model. The response surface methodology using the Box–Behnken method yields
the following equation as an uncoded unit: y ¼ 90:7017þ 5:3371ðUVÞ � 4:2315ðChloroformÞ
�0:3550ðTiO2Þ � 0:8101ðUVÞðChloroformÞ þ 0:1072ðUVÞðTiO2Þ þ 0:0574ðChloroformÞðTiO2Þ.
As for main effect factors of the model formula, concentration of Chloroform posted the
biggest effects followed by UV intensity and TiO2 concentration. The impact of various
factors on removal rate was higher when Chloroform concentration was lower, TiO2

concentration was higher, and number of UV lamp was higher.

Keywords: Box–Behnken; Chloroform; Response surface; Sonophotocatalysis; TiO2; UV
intensity

1. Introduction

Chloroform may be released to the air as a result
of its formation in the chlorination of drinking water,
wastewater, and swimming pools. Other sources
include pulp and paper mills, hazardous waste sites,
and sanitary landfills. Chemically, it is employed as a
solvent for fats, alkaloids, iodine, and other sub-
stances. When exposed to sunlight and air, it reacts to
form phosgene, a poisonous gas. Due to the nonbiode-
gradability of Chloroform, conventional biological
treatment methods for industrial and municipal
wastewater are ineffective. Therefore, it needs to
develop an effective treatment process.

Advanced oxidation processes (AOPs) can oxidize
and clean organic pollutants rapidly and randomly in
aqueous media by creating and utilizing active species
like hydroxyl radicals (OH

�
) [1]. The AOPs are being

used to various wastewater treatment fields in which
conventional methods can hardly be adapted. Among
them are nonbiodegradable wastewater and toxic
wastewater [2].

Recently, TiO2 photocatalytic process, which is a
part of AOPs, is being widely used to decompose
organic pollutants [3–11]. The process utilizes solar or
artificial ultraviolet ray lamp and TiO2 serves as cata-
lyst. Photocatalysis decomposes organic pollutants

Desalination and Water Treatment
www.deswater.com

doi: 10.1080/19443994.2012.748977

51 (2013) 3106–3113

April

1944-3994/1944-3986 � 2013 Balaban Desalination Publications. All rights reserved.



using OH
�
, which is generated on the surface of TiO2,

thanks to electron transition. Sonophotocatalysis
combines photocatalysis and supersonic waves [12]. In
the process, organic pollutants are treated through
chemical effect generating active species like free
radical. Mechanical impacts of supersonic waves
increase mass transfer and decrease particle size
[13,14]. With this condition, cavitation occurs during
rarefaction period [13,15] and small amount of vapors
are generated. Then, water is dissociated, generating
active species like free radical. The chemical impact of
the process makes possible treatment of organic pollu-
tants. Adding supersonic waves to photocatalysis

accelerates response rate, generates OH
�
radical better,

and eases mass transfer of reactants and products on
the surface of catalyst [12]. Thereby, the method is
more efficient in decomposing pollutants compared to
conventional photocatalysis [12].

However, most studies have been conducted
under subjective judgment of researchers on response
variables. And randomization, repetition, and blocking
have yet to be conducted to achieve objectivity of
experiment planning. In addition, there has been
almost no research on accuracy and analysis about
error term. And, this type of research is often con-
ducted with one fixed factor but different levels.
Therefore, it is difficult to find optimization about
response value under specific conditions. And, analyz-
ing and quantifying effects among factors is almost
impossible. Accordingly, this study was to optimize
response conditions, develop model formula, and pro-
vide statistical explanation about factors affecting
Chloroform removal rate of sonophotocatalysis with
adopting response surface analysis to gain multiple
regression analysis and optimal conditions of the test
model, which is empirical simulation.

2. Materials and methods

2.1. Reagents

The semiconductor employed as photocatalyst was
commercial TiO2 (BCT-S100-2), which is in granulated
form, and was used as received. According to the
manufacturer, BCT-S100-2 has a primary particle size
of 2mm, a specific surface area of 50m2/g, a density
of 2.2, and its crystalline mode is 80% anatase.

Chloroform, 99% purity, was obtained from Showa
Chemical Co., Japan. Aqueous solutions were
prepared using deionized and doubly distilled water.

2.2. Analytical methods

At regular time intervals during the reaction,
samples were withdrawn from the reactor using a

spring-loaded adjustable syringe (10mL), and then
immediately transferred to a 40mL vials. The
Chloroform was analyzed by a Hewlett-Packard gas
chromatography (HP 6890), with flame ionization
detector (GC/FID). The column was a HP-5 fused-silica
capillary column with dimensions of 50m� 0.2mm�
0.33 lm. The injection, column, and detector tem-
perature were 270, 120, and 270˚C, respectively.

2.3. Sonophotocatalytic reactor

The sonophotocatalytic reactor has been described
in Fig. 1. It consists of an illumination source, sonica-
tor, and blower. The light source used is 40W UV
lamps (Sankyo Denki Co). Ultrasonic irradiation was
performed from two sides with a reactor. Blower (1 L/
min) was used to prevent photocatalyst from settling.

Sonophotocatalysis operation conditions are
described in Table 1.

2.4. Design of experiments for optimization

2.4.1. Concept of response surface analysis method

Response surface explains functional relations of
response variable (characteristic) and independent
variable (design variables and factor). Response
surface formula has not been known yet. With using
RSM (response surface methodology), appropriate

Table 1
Operation conditions of the sonophotocatalysis

Volume 5 L

UV wavelength (UV-C) 254 nm

Total UV lamp (ea) 1, 2, 3

Sonication 40 kHz, 117V,4.1 amp, 190W

TiO2 (mg/L) 25, 50, 100

Chloroform (mg/L) 2, 5, 10

Fig. 1. Schematic diagram of the sonophotocatalytic
reactor.
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statistical model is simulated about response surface
and experiments are conducted under various
conditions of independent variables. With this
process, data are obtained and response surface is
estimated through regression analysis. By utilizing
estimated response surface formula, sensitivity analy-
sis can be conducted to analyze changes in response
variables according to changes in independent vari-
ables. Gaining combination of independent variables

and maximizing (minimizing) response variables leads
to optimization of production and processing.

2.5. Principle and presumption of experiment design method

Experiment planning method is conducted follow-
ing three principles and presumption. They are
randomization, replication, and blocking. The princi-
ple of randomization is that order of experiment
should be set randomly. If not, hidden factors (usually
depend on time) together with considered factors of
experiment can have an impact on the result. Principle
of replication is to repeat experiment under the identi-
cal condition. This is critical to assume error of experi-
ment and obtain P value. This can increase
reproducibility of experiment and minimize assess-
ment error which can occur during experiment.
Experiment design identifies how considering factors
affect response factors. If others have an effect on
response factors, assessing impact of considered fac-
tors is impossible. In this case, blocking is adopted to
block the other factors and obtain better experiment
result. This experiment was conducted based on the
three designing principles mentioned above.

Fig. 2. Design of Box–Behnken method.

Table 2
Box–Behnken design for experiment

Level Code Explanatory variables

UV254 (ea) Chloroform
(mg/L)

TiO2 (mg/L)

Max. level +1 3 10 100

Central level 0 2 5 50

Min. level �1 1 2 25

Run order Coded factor Uncoded factor

UV Chloroform TiO2 UV Chloroform TiO2

1 �1 �1 0 1 2 50

2 1 1 0 3 10 50

3 0 0 0 2 5 50

4 0 0 0 2 5 50

5 �1 1 0 1 10 50

6 1 0 �1 3 5 25

7 0 �1 1 2 2 100

8 �1 0 1 1 5 100

9 1 �1 0 3 2 50

10 �1 0 �1 1 5 25

11 0 1 1 2 10 100

12 0 0 0 2 2 50

13 0 1 �1 2 10 25

14 1 0 1 3 5 100

15 0 �1 �1 2 2 25
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2.6. Box–Behnken experiment design

The base of Box–Behnken plan is combining both
the balanced incomplete block design (BIBD) and the
2k full factorial layout design. At the center point, the
number of test, nc, is added to assume the second
response surface formula. The test point of vertex is
not included (Fig. 2). Box–Behnken plan conducts
experiments at the center of hexahedral corners and
that of entire experiment area. At level 3 of each fac-
tor, experiment is conducted and it sometimes has rot-
atability. At certain factor numbers, it always has
rotatability.

This study utilized Box–Behnken and assumed
first-order term and second-order term of response
surface efficiently. When numbers of factors are iden-
tical, experiment times become lower than that of cen-
tral composite design. In that case, cost is too high or
experiment is not possible. Box–Behnken plan is the
useful alternative to that. This is MFAST (multi-factor
at the same rime) in which all factors cross with the
levels within factors. They are designed randomly
with regular interval. The method can search
optimized conditions we want and quantify relations
between factors and responses.

The three factors identified in the experiment
were UV intensity, Chloroform concentration, and
TiO2 concentration. Three levels and three factors
were applied as seen in Table 2. As for center point,
three times were repeated following the principle of
replication.

Optimal response conditions are determined with
surface plot or contour plot.

Table 3
Experimental results of the Box–Behnken design

Run order Uncoded factor Chloroform
removal (%)

UV Chloroform TiO2

1 1 2 50 80.6

2 3 10 50 67.5

3 2 5 50 80.4

4 2 5 50 65.7

5 1 10 50 62.4

6 3 5 25 80.6

7 2 2 100 88.5

8 1 5 100 74.5

9 3 2 50 98.6

10 1 5 25 72.5

11 2 10 100 87.6

12 2 2 50 90.4

13 2 10 25 55.7

14 3 5 100 98.6

15 2 2 25 90.4

Table 4
Regression analysis and response surface model fitting
(ANOVA) for second-order equation

Source DFa Seq. SSb Fc Pd

Model 9 2,263.8 10.44 0.009

Linear 3 1,736.5 3.78 0.093

Square 3 83.9 2.21 0.395

Cross product 3 443.4 6.14 0.040

Residual error 5 120.4

Lack of fitness 4 12.4 0.03 0.996

Pure error 1 108.1

Total 14 2,384.2

aDF: degree of freedom, bSeq SS: sum of squares, cF value=MSR/

MSE, and dthe P value is defined as the smallest level of signifi-

cance leading to rejection of the null hypothesis.

Table 5
Regression coefficients analysis for second-order equation

Source Coefficient P

Constant 116.3349 0.002

UV �4.449 0.722

Chloroform �7.995 0.033

TiO2 �0.693 0.085

UV�UV 2.447 0.396

Chloroform�Chloroform 0.302 0.161

TiO2�TiO2 0.003 0.279

UV�Chloroform �0.810 0.238

UV�TiO2 0.107 0.153

Chloroform�TiO2 0.058 0.014

Table 6
Regression analysis and response surface model fitting
(ANOVA) for “linear + cross product”

Source DFa Seq. SSb Fc Pd

Model 6 2,176.0 13.94 0.001

Linear 3 1,736.5 7.83 0.009

Cross product 3 439.5 5.63 0.023

Residual error 8 208.2

Lack of fitness 7 100.1 0.13 0.971

Pure error 1 108.0

Total 14 2,384.2

aDF: degree of freedom, bSeq SS: sum of squares, cF value=MSR/

MSE, and dthe P value is defined as the smallest level of signifi-

cance leading to rejection of the null hypothesis.
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3. Results and discussion

3.1. Presumption of response model by response surface
analysis

It needs 15 experiments which is considered
randomization and repletion at the central point.
Experimental results of the Box–Behnken design are
shown in Table 3. When the results of Table 3 were
analyzed to second-order equation (Tables 4 and 5),
P value for square order was 0.395. It means

Table 7
Regression coefficients analysis for “linear + cross product”

Source Coefficient P

Constant 90.702 0.000

UV 5.337 0.359

Chloroform �4.232 0.030

TiO2 �0.355 0.066

UV�Chloroform �0.810 0.233

UV�TiO2 0.107 0.144

Chloroform�TiO2 0.057 0.008

(a)

(b)

Fig. 3. Main effect (a) and interaction effect (b) plot for
Chloroform removal (%).

Fig. 4. Residual plot of model for error values ((a) normal
probability, (b) residuals vs. the response, (c) residuals vs.
the order of the data, and (d) histogram).
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significance was very low. However, the results were
fitted to “linear + cross product” term (Tables 6 and 7),
i.e. P value for lack of fitness was 0.971 and revised
R2 was 84.7%. Moreover, analysis of variance was con-
ducted to evaluate the fitness. The result showed that
P value for linear term was 0.009 and P value for
cross product term was 0.023.

The reaction models encoded variables in Table 6
were shown in Eqs. (1) and (2).

Parameter estimate from coded data:

y ¼ 77:473� 1:188ðUVÞ � 13:013ðChloroformÞ
þ 6:800ðTiO2Þ � 7:300ðUVÞðChloroformÞ
þ 15:125ðUVÞðTiO2Þ þ 2:125ðChloroformÞ
� ðTiO2Þ ð1Þ

Parameter estimate from uncoded data:

y ¼ 90:7017þ 5:3371ðUVÞ � 4:2315ðChloroformÞ
� 0:3550ðTiO2Þ � 0:8101ðUVÞðChloroformÞ
þ 0:1072ðUVÞðTiO2Þ þ 0:0574ðChloroformÞ
� ðTiO2Þ ð2Þ

3.2. Main effect and interaction effect of response model
factors

Fig. 3 shows impacts of each factor on the
estimated value and interaction effects of factors. Main
effect is caused by changes in level of factors and also
refers to discrepancy of level average of each factor.
When the discrepancy is large, main effects exist. If
not, we can tell there is no main effect.

The larger the main effects, the bigger the gradi-
ents, as seen in Fig. 3(a). Chloroform concentration
has the largest impacts, followed by UV intensity and
initial TiO2 concentration.

Interaction effect, which means the impact of
certain factor, is adjusted due to the level of the other
factors. In other words, if the effect caused by factor
A shows consistently B1 and B2, which are another
level of B, there is no interaction effect between A and
B. Meanwhile, when the effect caused by B shows
level B1 and A shows B2, it has interaction effect
between A and B.

As shown in Fig. 3(b), response model factors had
interaction effect, because the factors were not paral-
lel, even though if the graphs show parallel, it had
not interaction effect among the factors. These results

Fig. 5. Response surface contour plot (2D) of Chloroform removal (%) in decoded value.
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are the same as P value of interaction shows 0.023
(<0.05) in Table 4.

3.3. Residual analysis of response model

Fig. 4 shows normal probability (a), residual- fitted
value (b), residual-data observation order (c), and his-
togram (d) which are used to evaluate suitability of
response model. Normal probability is used to evalu-
ate normal distribution of data, effect by another vari-
able, and characteristic of data. Residual-fitted value is
used to evaluate regularity of variation nonlinear rela-
tionship and characteristic of data. Residual-data
observation order is used to evaluate the effect of data
which is acquired to time or data collection order.
Histogram is used to evaluate inclination of data or
characteristic of data.

The results demonstrated that all the data showed
normal distribution as they were straightly distributed
between �2 and 2 of residual in normal probability.
As shown in residual-fitted value, residuals were ide-
ally distributed around zero. Histogram also showed
normal distribution. Furthermore, residual-data obser-
vation order showed that all data distributed between
�2 and 2 of residual. Therefore, the model is satisfied
with four assumptions on error term, i.e. normality,
equal variation, independence, and linearity. There-
fore, the model is applicable to analysis of sonophot-
ocatalysis process.

3.4. Determination of optimal reaction conditions

The effect of Chloroform removal efficiency by
reaction factors using response surface contour plot
(2D) and response surface plot (3D) in sonophotocatal-
ysis process was shown in Figs. 5 and 6. It could be
known that how could the reaction factors of the
model be effected to the dependent variable from
Figs. 5 and 6.

Fig. 5 showed that the lower initial Chloroform
concentration, higher TiO2 concentration, and more
number of UV lamp stimulated higher Chloroform
removal. Moreover, Chloroform removal efficiency
was more affected by initial Chloroform concentration
than UV lamp number or TiO2 concentration judging
from slope of each contour.

As shown in Fig. 6, Chloroform removal was more
effective at the minimum Chloroform concentration
and maximum TiO2 concentration in case of interac-
tion between Chloroform and TiO2. In case of Chloro-
form and UV lamp number, Chloroform removal was
more effective at the minimum Chloroform concentra-
tion and maximum UV lamp number, and more effec-
tive Chloroform concentration than UV lamp number.

In case of interaction between TiO2 and UV lamp
number, Chloroform removal was more effective at
the maximum TiO2 concentration and maximum UV
lamp number, and more effective TiO2 concentration
than UV lamp number.

4. Conclusion

This study treated Chloroform through the use of
sonophotocatalysis. The experimental results obtained
from this study were as follows:

(1) “Linear +Cross product” model equation
deduced by experiment design method for
sonophotocatalysis of Chloroform was more suit-
able than second-order equation, and, moreover,
P value (0.001) and R2 (84.7) showed high correla-
tion.

Fig. 6. Response surface plot (3D) Chloroform removal (%)
in decoded value.
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(2) The evaluation results on main effect factor of the
model equation showed that Chloroform initial
concentration is the most effective factor, and UV
lamp number and TiO2 concentration are the
next.

(3) Interaction effect of response model factors was
shown as P value for interaction was 0.023
(<0.05) in model equation.

(4) The results of residual analysis on error term of
the reaction model showed that it was satisfied
normality, equal variation, independence, and lin-
earity. Therefore, the model was acceptable.

(5) The experiments were performed with various
UV lamp number, Chloroform initial concentra-
tion, and TiO2 on sonophotocatalysis process. The
results using response surface contour plot (2D)
showed that the lower Chloroform initial concen-
tration, higher UV lamp number, and TiO2 con-
centration stimulated higher Chloroform removal.

(6) From response surface plot (3D), Chloroform
removal was more effective at the minimum
Chloroform concentration and maximum TiO2

concentration in case of interaction between Chlo-
roform and TiO2, more effective Chloroform con-
centration than UV lamp number in case of
interaction between Chloroform and UV lamp
number, and more effective TiO2 concentration
than UV lamp number in case of interaction
between TiO2 and UV lamp number.
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