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ABSTRACT

In this study, an artificial neural network (ANN) based techniques is applied for the predic-
tion of the percentage removal of Cr(VI) ions from aqueous solution using eight different
natural biosorbents. The effects of operating parameters such as initial pH, initial Cr(VI) ion
concentration, adsorbent dosages, and contact time are studied to optimize the conditions for
maximum removal of Cr(VI) ions. The ANN with a single hidden layer trained with Leven-
berg-Marquardt algorithm predicted the percentage removal of Cr(VI) ions from aqueous
solution accurately.
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1. Introduction

Pollutants like toxic heavy metals and dyes are
released from different types of industries to the envi-
ronment causing different disease and disorder. Cr(VI)
is one of the most important toxic heavy metal dis-
charged from various industries including mining, tan-
ning, cement, production of steel and other metal
alloys, electroplating operations, photographic material
and corrosive painting industries [1,2]. It is carcino-
genic, mutagenic, and toxic; thus, its presence in the
environment poses a significant threat to aquatic life as
well as public health [3]. The maximum permissible
limit of Cr(VI) for the discharge to inland surface water
is 0.1mg/L and in potable water is 0.05mg/L [4,5]. The
Ministry of Environment and Forest, Government of

India has set minimal national standards of 0.1mg/L
for safe discharge of effluent containing Cr(VI) in sur-
face water [6]. In order to comply with this limit, indus-
tries have to treat their effluents to reduce the Cr(VI)
concentration in wastewater to acceptable levels. In
waste water treatment, various technologies are
available such as chemical precipitation, ion exchange,
electrochemical precipitation, solvent extraction, mem-
brane separation, concentration, evaporation, reverse
osmosis, emulsion pertraction, adsorption, etc. [7].
Among these technologies, adsorption is a user-
friendly technique for the removal of heavy metals.
This process includes the selective transfer of solute
components in the liquid phase onto the surface or onto
the bulk of solid adsorbent materials.

In last two decades artificial neural network
(ANN) models have been extensively studied in
different fields of engineering, finance, etc. with a*Corresponding author.
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basic objective of achieving human like performance.
The neural networks are powerful tools to identify
underlying highly complex relationships from input–
output data [8]. ANN derived from the biological
counterparts, and based on the concept that a highly
interconnected system of simple processing elements,
known as nodes or neurons, enables to learn highly
complex nonlinear interrelationships existing between
input and output variables of the data-set.

In ANN model of system, feed-forward architec-
ture, namely, multilayer perception, MLP is most
commonly used. This network consists of at least
three layers, namely, input layer, one or several
hidden layers, and output layer. Each layer consists of
a number of elementary processing units known as
neurons. Each neuron in the input is connected to its
hidden layer through weights. Also, there is connec-
tion between hidden and output layers. When an
input is introduced to the neural network, the synap-
tic weights between the neurons are simulated and
these signals propagate through layers and the output
result is formed. The main objective is to form the
output by the network in such a way that it should be
close to the expected output. The weights between the
layers and the neurons are modified in such a way
that next time the same input will provide an output
that are closer to the expected output. Various algo-
rithms are available for the training of the neural net-
works. Feed-forward backpropagation (BP) algorithm
is the most versatile and robust technique, which pro-
vides the most efficient learning procedure for MLP
networks. This algorithm is especially capable of solv-
ing predictive problems [9]. The ANN contain hidden
layer(s) that have the ability to deal robustly with very
complex and nonlinear problems. The number of hid-
den layers corresponds to the complexity of the prob-
lem. Single hidden layer ANN creates a hyper plane.
Two hidden layer networks combine hyperplanes to
form convex decision areas and three hidden layer
ANNs combine convex decision areas to form convex
decision areas that contain concave regions [10]. The
convexity or concavity of the decision region indicates
roughly to the number of unique inferences that are
performed on the input variables to give the desired
output. Barnard and Wessels [11] pointed out that
increasing the number of hidden layers enables a
trade-off between smoothness and closeness-of-fit. The
greater number of hidden layers improves the close-
ness-of-fit while a smaller number of hidden layers
improve the smoothness or extrapolation capability of
the ANN. White [12] indicated that single hidden
layer with arbitrarily large quantity of neurons is
capable of modeling accurately, whereas Walczak [13]
observed that two hidden layer networks are better

than the single hidden layer network for specific prob-
lem. Bansal et al. [14], and Tamura and Tateishi [15]
observed that the single hidden layer can solve most
of the problems for more input variables and outputs.
Recently, researchers have successfully modeled a
three layer feed forward BP network to predict the
removal of Cu(II) from industrial leachate by pumice
[16] and Zn(II) from hazelnut shell [17].

The present paper deals with a development of a
more general and system-independent neural network
based on MLP having a single hidden layer trained
with BP and Levenberg-Marquardt (LM) algorithms
for the prediction of the percentage removal of Cr(VI)
from aqueous solution using eight different bioadsor-
bents under different operating conditions using four
different transfer functions in a single hidden layer.
The details of the adsorption study of these adsor-
bents are reported in our earlier publications and the
relevant experimental data are taken for this ANN
analysis [18,19].

2. Experimental methods

2.1. Preparation of adsorbents

Saw dust of teakwood origin, neem bark, rice
straw, rice bran, rice husk, hyacinth roots, neem
leaves, and coconut shell were used for Cr(VI) ions
removal from aqueous solution. All the adsorbents
were collected from local area near Kolkota, West
Bengal, India.

Firstly, the coconut shell was crashed in a roll
crusher and then grinded. The saw dust, neem bark,
neem leaves, and coconut shell were treated with
0.1N NaOH to remove lignin-based color materials
followed by treatment with 0.1N H2SO4. Rice straw,
rice bran, rice husk, and hyacinth roots were boiled
for 6 h to remove color materials. Finally, all the
adsorbents were washed with distilled water several
times and dried at 105˚C for 6 h to remove the adher-
ent moisture. After drying, all the adsorbents were
sieved to obtain particle size of 250–350lm.

2.2. Reagents and equipment used

The necessary chemicals used in the experiment
were of analytical grade and obtained from E. Merck
Limited, Mumbai, India. The pH of the solution was
measured with a EUTECH make digital microproces-
sor-based pH meter previously calibrated with stan-
dard buffer solutions. UV-Spectrophotometer (U-4100
spectrophotometer, Hitachi, Japan) was used to
determine the Cr(VI) ions content in standard and
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treated solutions after adsorption experiments. FT-IR
(Jasco FT/IR-670 Plus) studies were carried out to
determine the type of functional group responsible for
Cr(VI) ions adsorption. Surface area was measured on
micromeritics surface area analyzer (ASAP2020).
Moisture content determination was carried out with
a digital microprocessor based moisture analyzer
(Metteler LP16). The point of zero charge (pHpzc) was
determined by solid addition method [20]. All the
characteristics of the biosorbents are reported in
Table 1.

2.3. Preparation of standard Cr(VI)ion solution

The stock solution containing 1,000mg/L of Cr(VI)
ions was prepared by dissolving 3.73 g of A. R. grade
K2CrO4·2H2O in 1,000ml double distilled water. The
required initial concentration of Cr(VI) standard solu-
tion was prepared by appropriate dilution of the
above stock Cr(VI) solution.

2.4. Batch adsorption studies

Using the necessary adsorbents in a series of
250ml stopper conical flask containing 100ml of
desired concentration of Cr(VI) ion solution batch
adsorption were carried out. The pH of the solution
was monitored by adding 0.1N HCl or 0.1N NaOH
solution as required. Then, the flasks were shaken for
the desired contact time in an electrically thermostated
reciprocating shaker with 120–125 strokes/minute at
30˚C. Cr(VI) concentration was estimated by drawing
conical flask from shaker at regular intervals of time
to find the equilibrium when the concentration is con-
stant against time The contents of the flask were then

filtered through filter paper (Whatman No. 1). UV-vis-
ible spectrophotometer was employed to determine
the remaining Cr(VI) concentration in the sample
using 1,5-diphenylcarbazide method as laid down in
standard methods for examination of water and
wastewater, 1998 edition, APHA, AWWA, WEF [21].
The removal efficiency of Cr(VI) ions by different bio-
sorbent from aqueous solution was calculated using
following equation,

Percentage removal of Cr(VI) ions

¼ ðC0 � CtÞ
C0

� 100% ð1Þ

where C0 is the initial Cr(VI) ion concentration and Ct

is the concentration at any time t. All the investigation
were carried out in triplicate to avoid any discrepancy
in experimental results with the reproducibility and
relative deviation of the order of ± 0.5 and± 2.5%,
respectively.

2.5. ANN Structure and its Optimization Procedure

Fig. 1 presents the schematic diagram of the ANN.
Soulié [22] pointed out that the selection of the input
variables is the most important and a very complex
task for the ANN. Pakath and Zaveri [23] claimed that
ANNs are highly dependent on the specification of
the input variables. However, in general, input vari-
ables are routinely misspecified by the ANN develop-
ers [24]. So, the first step is to determine the optimal
set of input variables to perform the ANN in a best
possible way. Researchers [13,25,26] have clearly indi-
cated that the requirement for the extensive knowl-
edge acquisition is necessary for properly utilizing the
domain experts to specify the ANN input variables.
Smith [27] pointed out that the ANN input variables
should be predictive but not correlated in nature,
because the correlated variables degrade the ANN

Table 1
Different physical characteristics of natural adsorbents

Adsorbents Surface area
(m2/g)

Moisture
content
(%)

Point of
zero
charge

Ash
content
(%)

Saw dust 3.85 8.63 3.90 12.35

Neem bark 3.47 9.23 4.50 10.62

Rice straw 1.21 7.26 6.85 9.40

Rice bran 0.12 10.68 6.10 11.72

Rice husk 0.54 9.02 6.05 11.80

Hyacinth
roots

5.78 11.25 6.59 10.74

Neem
leaves

0.57 8.33 6.94 13.58

Coconut
shell

0.52 6.16 6.62 9.23

Fig. 1. Schematic diagram of BP network.
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performance by interacting with each other as well as
other elements to produce a biased effect. Lenard
et al. [28] observed that the reduction of the input set
size by 50%, i.e. eight—four input variables improved
the performance of the ANN by 1.2–9%. Whereas, Jain
and Nag [29] indicated that the reduction of input
variables did not improve the ANN performance,
although they used statistical measure of the predic-
tiveness and eliminated all the correlated variables.

The input variables for the modeling of the Cr(VI)
removal are as follows:

(1) Name of the adsorbent
(2) Initial pH
(3) Initial concentration of Cr(VI)
(4) Adsorbent dosage

The equilibrium contact time is taken for all cases
and is shown in Table 2. Hence, it is not taken as an
input variable. The output variable is the percentage
removal of Cr(VI). Initially, the experimental data, i.e.

input and output are randomized. The first 60% of
data-points are used for training, the next 20% for
cross-validation, the next 10% for testing, and the rest
used for prediction. Generalized delta-rule algorithm
is used for the BP for this particular network. A linear
function is used in the output layer.

yi ¼ xi þ b ð2Þ

Four different transfer functions were used in a
hidden layer and are shown in Table 3. Here, b is
the gain and it is used to control the steepness of the
transfer function. The value of b is mostly unity. The
general working principle of the ANN using BP
algorithm is as follows:

(1) First, the output is generated.
(2) The generated output is then compared with

the desired output.
(3) The deviation in step (2) is the error and this

error is passed to the BP component, which
adjusts the weights of the network for training.

(4) The maximum number of epochs are kept
32,000.

(5) The initial learning rate and the momentum
coefficient used are 0.7 and 1.0, respectively.

(6) The stopping criteria for the BP process (1) till
the error is6 0.001, or (2) if there is no improve-
ment of the value of MSE for 20,000 epochs.

The synapse that connects the hidden layer to the
input layer and the synapse that connects the hidden
layer to the output layer adjust the weights and learn-
ing rates automatically to reduce the error. It is always
desired that the number of processing elements in the
hidden layer must be kept minimum to reduce
the complexity of the network. In the hidden layer,
the numbers of nodes are optimized by varying the

Table 2
Optimum operating conditions obtained in the batch
process

Adsorbent pH Cr(VI)
concentration
(mg/L)

Contact
time
(min.)

Adsorbent
dosage
(g/L)

Saw dust 3 50 240 10

Neem bark 3 50 240 10

Rice straw 2 25 180 10

Rice bran 2 25 300 10

Rice husk 1.5 25 360 10

Hyacinth roots 2 25 240 10

Neem leaves 2 25 240 10

Coconut shell 2 25 240 10

Table 3
Optimum number of processing elements in the hidden layer for four different transfer functions

Transfer function in hidden layer Equation Optimum number of
processing elements
in the hidden layer

BP LM

Transfer function 1 y ¼ tanh bx ¼ ebx�e�bx

ebxþe�bx
5 24

Transfer function 2
y ¼ bx Where

bx ¼ 1 for bx[1
bx ¼ �1 for bx\� 1

16 21

Transfer function 3
y ¼ bx Where

bx ¼ 0 for bx\0
bx ¼ 1 for bx[1

20 12

Transfer function 4 y ¼ 1
1þe�bx 9 12
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number from 1 to 25, and for each case, the MSE was
calculated.

The LM algorithm is a second-order learning algo-
rithm. For training using LM algorithm in the hidden
and output layer, the user has to set the initial value
of the network parameter k, i.e. 0.01. In the hidden
layer, the numbers of nodes are optimized by varying
the number from 1 to 25, and for each case, the MSE
was calculated.

The number of nodes for which the value of the
cross-validation MSE is minimum, is considered to be
optimum. The optimum numbers of nodes are given
in Table 2. Each run was set for 32,000 epochs when
BP algorithm was used and was set for 300 epochs
when LM algorithm was used. A similar procedure
was also reported in the literature [30,31].

3. Result and discussion

3.1. Optimum operating condition

The pH of the solutions has an important variable
governing metal adsorption. In general, the adsorption
of cation is favored at pH>pHPZC. The effect of initial
pH on the adsorption process is represented in Fig. 2.
At very low pH, chromium ions exist in the form of
HCrO�

4 , while in the increase in pH up to pH=6, dif-

ferent forms, such as Cr2O
2�
7 , HCrO�

4 , and Cr3O
2�
10 ,

coexist, of which HCrO�
4 predominates. As pH

increases, the equilibrium is shifted from HCrO�
4 to

CrO2�
4 and Cr2O

2�
7 [32]. At very low pH values, the

surface of the adsorbent would be surrounded by the
H3O

+ ions, which enhance the Cr(VI) interaction with
binding sites of the biosorbent by greater attractive
forces. As the pH increased, the overall surface charge
on the biosorbents became negative and the adsorp-
tion decreased [2].

The following equilibrium may be written in
aqueous solutions [33].

H2CrO4 $ HCrO�
4 þHþ K1 ¼ 1:21 ð3Þ

Cr2O
2�
7 þH2O $ 2HCrO�

4 K2 ¼ 35:5 ð4Þ

HCrO�
4 $ CrO2�

4 þHþ K3 ¼ 3� 10�7 ð5Þ

where K’s are the equilibrium constant. The adsorp-
tion of Cr(VI) ion was not significant at pH values
more than 6 due to dual complexation of the anions
(CrO2�

4 , Cr2O
2�
7 and OH�) to be adsorbed on the sur-

face of the adsorbents, of which OH� predominates
[34]. The optimum pH for the adsorption process is
shown in Table 2.

The percentage removal of Cr(VI) ions increases
with the increase in contact time.

The biosorption considered in all cases is of two
phases: a primary rapid phase and a secondary slow
phase. The initial rapid phase is indicated to give
away a very slow approach to equilibrium and is
accounted for the major part in the total Cr(VI) ions
sorption. The secondary slow phase has indicated that
the adsorption process has reached equilibrium. The
equilibrium time for the adsorption of Cr(VI) were 3 h
for rice straw; 4 h for saw dust, neem leaves, hyacinth
roots, neem leaves and coconut shell, 5 h for rice bran;
and 6h for rice husk.

The percentage removal of Cr(VI) ion decreases
with the increase in initial Cr(VI) ion concentration
and is shown in Fig. 3. At the lower concentration, all
the Cr(VI) ions in the solution reacted with the bind-
ing sites and thus facilitated almost complete adsorp-
tion. At higher concentration, more Cr(VI) ions were
left unadsorbed in the solution due to the saturation
of the binding sites. This indicates that the energeti-
cally less favorable sites become involved with
increasing Cr(VI) ion concentration in aqueous solu-
tions [35,36].

The effect of adsorbent dosage for the removal of
Cr(VI) ion from aqueous solution using different natu-
ral adsorbent is shown in Fig 4. The efficiency of Cr
(VI) ion removal was found to increase with adsor-
bent dosage. The variation of adsorption capacities
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Fig. 2. Effect of pH on the adsorption of Cr(VI) (metal
concentration: 50mg/L for saw dust and neem bark,
25mg/L for other adsorbents; adsorbent dosage: 10 g/L;
and contact time: 5 h for saw dust, neem bark, neem
leaves, 6 h for coconut shell, 7 h for rice straw, rice bran,
rice husk, and hyacinth roots).
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between the different biosorbents could be related to
the type and concentration of the functional group
responsible for the adsorption of metal ions [7]. With
increase in adsorbent dosage, more surface area was
available for adsorption due to increase in active sites
on the adsorbent. The optimum conditions for the
adsorption process are listed in Table 2.

3.2. ANN Performance

Sola and Sevilla [37] reported the effects of data
normalization on the ANN process and concluded
normalization of data yields better prediction, how-
ever, recently, it was reported that better results are
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Fig. 3. Effect of initial Cr(VI) ion concentration on the
adsorption process (pH: 1.5 for rice husk, 2 for rice straw,
rice bran, hyacinth roots, neem leaves, coconut shell, and 3
for saw dust and neem bark; adsorbent dosage: 10 g/L;
and contact time: 5 h for saw dust, neem bark, neem
leaves, 6 h for coconut shell, 7 h for rice straw, rice bran,
rice husk, and hyacinth roots).
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Fig. 4. Effect of adsorbent dosage on the adsorption of Cr
(VI) (pH: 1.5 for rice husk, 2 for rice straw, rice bran,
hyacinth roots, neem leaves, coconut shell, 3 for saw dust
and neem bark; metal concentration: 50mg/L for saw dust
and neem bark, 25mg/L for other adsorbents; and contact
time: 3 h for rice straw, 4 h for saw dust, neem bark,
hyacinth roots, neem leaves, coconut shell, 5 h for rice
bran, and 6 h for rice husk).

Table 4
Range of variables for batch experiment

Adsorbent Initial
pH

Initial Cr(VI)
concentration
(mg/L)

Contact
time
(min)

Adsorbent
dosage
(g/L)

Saw dust 2–11 3–300 0–300 2.5–30.0

Neem bark 2–11 3–300 0–300 2.5–30.0

Rice straw 1–9 5–300 0–420 2.5–12.5

Rice bran 1–9 5–300 0–420 2.5–12.5

Rice husk 1–9 5–300 0–420 2.5–12.5

Hyacinth
roots

1–9 5–300 0–420 2.5–12.5

Neem leaves 1–9 5–300 0–300 2.5–12.5

Coconut shell 1–9 5–300 0–360 2.5–12.5
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Fig. 5. Variation of MSE for cross-validation with the
number of nodes for different transfer functions.
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yielded without normalization also [38]. Hence, in this
case, all raw data are used as input variables without
normalization. Table 4 represents the range of vari-
ables investigated as input variables and the total
number of data points is 163. The performance of the
network is checked using the following parameters:

Mean square error (MSE),

MSE ¼ 1

N

XN
i¼1

ðyi � y�i Þ2 ð6Þ

Average absolute relative error (AARE),

AARE ¼ 1

N

XN
i¼1

ðy�i � yiÞ
yi

����
���� ð7Þ

Standard deviation (r),

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

1

N � 1

ðy�i � yiÞ
yi

����
�����AARE

� �2vuut ð8Þ

Cross-correlation coefficient (R),

R ¼
PN
i¼1

ðyi � yÞðy�i � y�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðyi � yÞ2 PN
i¼1

ðy�i � y�Þ2
s ð9Þ

Chi-square test (w²),

v2 ¼
XN
i¼1

ðyi � y�i Þ2
y�i

ð10Þ

For better performance of the network, the MSE,
AARE, and standard deviation should be as small as
possible. It has also been verified that the cross-
correlation coefficient between input and output
should be close to unity for better predictability.
When more than one model is acceptable statisti-
cally, then the Chi-square test should be performed
to find the best-fit model. The lowest value indicates
the best model.

Fig. 5 shows the variation of MSE with the number
of nodes for different transfer functions when BP algo-
rithm was used in both hidden and output layer. A
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Table 5
Minimum value of cross-validation MSE during training with four different transfer functions

Algorithm Measurement type Transfer function 1 Transfer function 2 Transfer function 3 Transfer function 4

BP MSE 0.007190 0.007749 0.004738 0.004433

LM 0.006140 0.007422 0.010450 0.003146
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similar procedure was followed for training with LM
algorithm. The optimum number of nodes is the one
where the MSE for cross-validation is minimum.
Fig. 6 represents the training curve of the neural net-
works when BP algorithm was used. The optimum
number of processing element is estimated on the
basis of minimum value of MSE for cross-validation.
Fig. 7 represents the cross-validation curve of the neu-
ral networks when LM algorithm was used. Initially,
the MSE for each epoch for training and cross-valida-
tion in both cases are recorded for five different runs
separately. There were two stopping criteria for the
training of the network. If there is no improvement in
the value of cross-validation MSE for 20,000 epochs,
then the training was set to stop. For training with
both the algorithms, the minimum value of MSE of
cross-validation (the threshold value) was set at 0.001
for all the four different transfer functions in the hid-
den layer. For the hidden layer of BP network, the

Table 6
Performance of neural network with different transfer functions for testing using optimum number of processing
elements

Algorithm Measurement type Transfer function 1 Transfer function 2 Transfer function 3 Transfer function 4

BP AARE 0.055300 0.088058 0.053861 0.063896

SD (r) 0.040302 0.093480 0.040821 0.046964

MSE 20.28852 47.75586 26.70847 30.60503

CCC (R) 0.967442 0.913026 0.954456 0.952915

LM AARE 0.062204 0.056555 0.070699 0.049624

SD (r) 0.050772 0.044129 0.062844 0.032542

MSE 26.79431 22.99827 33.64374 18.71493

CCC (R) 0.956842 0.961997 0.949956 0.968771
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Fig. 8. Comparison of percentage removal for ANN
prediction and experimental results with four different
transfer functions in the hidden layer for testing.

Table 7
Performance of neural network with different transfer functions for prediction using optimum number of processing
elements

Algorithm Measurement type Transfer function 1 Transfer function 2 Transfer function 3 Transfer function 4

BP AARE 0.077706 0.078630 0.089642 0.073617

SD (r) 0.135561 0.084056 0.093446 0.078303

MSE 45.79378 46.34546 46.44381 30.93147

CCC (R) 0.943763 0.952204 0.953545 0.962527

w² 11.41718 13.41852 13.37263 8.771089

LM AARE 0.097346 0.068778 0.116993 0.075846

SD (r) 0.127050 0.072029 0.124751 0.082228

MSE 53.68315 30.43068 70.49896 33.03687

CCC (R) 0.935763 0.962237 0.917787 0.963493

w² 17.82163 8.390167 22.86298 10.40875
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value of learning rate was 0.7 and that of momentum
coefficient was 1. Table 5 represents the minimum
value of cross-validation MSE reached during training
with four different transfer functions for training with
both the algorithms. A similar type of procedure was
also reported in our earlier works [30,31].

Testing was done just before the final prediction to
check the effectiveness of training using the above-
mentioned four networks. Table 6 represents the per-
formance of the testing. The low values of AARE and
cross correlation co-efficient (R), which is greater than
0.91 in each case indicates that the training was good
and the network can be used for final prediction.
Fig. 8 shows the comparison between the experimen-
tal to the predicted percentage removal with optimum
number of processing elements in the hidden layer for
testing.

Table 7 represents the performance of the neural
networks for final prediction. It is clear from the table
that the cross correlation co-efficient (R) value is
nearly 0.95 for each of the four cases. The low value
of the average absolute relative error (AARE) also
shows the accuracy of the result in the different sys-
tems. From these observations, it is clear that the
ANN trained with both the algorithms predict the
percentage removal well.

The high value of cross-correlation co-efficient (R)
and the low value of chi square (w²) for the transfer
function 2 with 21 (optimum number) processing

Table 8
Description of weights associated with input, hidden, and output layers

Serial no. Input to hidden layer connection Output to hidden layer connection

1 0.004093 0.307667 0.711721 �0.667327 0.490202

2 �0.252397 0.216979 �0.718551 �1.453808 �0.777557

3 �0.355136 �0.078038 0.079612 0.436439 0.905247

4 0.576476 �0.049406 0.268346 0.372066 �0.145048

5 �0.210925 �0.183375 �0.437285 �0.586537 �0.535508

6 1.083122 0.294503 0.001665 0.847319 1.111713

7 0.058674 �0.374346 0.365316 �0.863709 �0.323758

8 1.286735 �0.035538 1.482840 �0.420459 �0.609782

9 �0.209066 �0.773105 �0.108152 �0.114437 1.129915

10 0.960628 0.372893 �1.134731 0.006170 �0.008940

11 0.295896 �0.697492 0.333204 �0.093179 �0.272155

12 0.338536 �3.089213 1.182684 0.203710 0.068179

13 0.461557 �0.664719 0.380643 �0.387884 �0.807871

14 �0.388255 �0.190040 �0.018621 0.464077 0.855634

15 0.504177 1.496818 �0.050444 �0.180411 �0.590328

16 �0.056421 �0.665780 0.005551 0.057835 0.525473

17 �0.765281 �0.779470 0.127195 0.027548 �0.202252

18 0.280103 0.137721 �0.506341 �0.305682 �0.393473

19 0.541006 �1.514863 �1.045546 1.377181 �0.460895

20 �0.025035 �0.001037 1.424022 0.738552 �0.392533

21 2.898609 0.326398 0.280763 �0.168228 �0.253040
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Algorithm: Levenberg-Marquardt

Number of hidden layer: 1

Transfer Function: 2

Number of Processing Elements: 21

Fig. 9. Comparison of percentage removal for ANN
prediction and experimental results with nine processing
elements and Transfer function 4 in the hidden layer for
final prediction.
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elements (when the network was trained with LM
algorithm) gives the most accurate prediction of the
percentage removal.

The weights associated with this network having
21 processing elements of the hidden layer connected
to each of the four inputs (84 connections in total, i.e.
21 each for the four inputs) and also connected to the
output (21 connections in total) are presented in
Table 8.

Fig. 9 and Table 9 show the comparison between
the experimental to the predicted percentage removal
with 21 processing elements and transfer function
number 2 in a hidden layer when the network was
trained with LM algorithm. This result indicates that
the performance of the network output is excellent.

4. Conclusion

A neural network based model was developed for
the prediction of percentage removal. A multilayer
perceptron with BP and LM algorithm were used for
the analysis. Four different slandered transfer func-
tions in a hidden layer and a linear output function
were used. Optimization for each transfer function
was carried out in all cases. The ANN model trained
with LM algorithm using a hidden layer with transfer
function 2 and 21 processing elements gives better
predictability of the percentage removal.
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