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ABSTRACT

This study attempts to characterize the organization, geometry and continuity of aquifer
systems in a faulted setting, by geostatistical methods. It concerns the “Jeffara de Medenine”
aquifers, in South-Eastern Tunisia. The quality of architectural reservoir modelling depends
heavily on available data and on the fault network at the origin of its compartmentalization.
In our case study, the available data consist mainly of boreholes: (i) usually sparse: the data
distribution and density are very uneven within the study area, depending on the aquifers
and the river network; (ii) they do not, usually penetrate the entire aquifer formation. There-
fore, aquifers situated at a great depth remain unattainable for many drillings, leaving large
areas under-informed and (iii) they are supplemented by seismic data which, although of
variable quality, provide useful information for building the fault network at a large scale.
To deal with this lack of data, an original geostatistical approach is applied in order to make
the best use of the available data: (i) borehole data corresponding to the geological interfaces:
these are exact data (equal to) and (ii) information provided by the end of drilling; these are
uncertain data using inequalities (less than, greater than, between). The estimation of the
Turonian reservoir top (taken as an example in this study) may indeed be constrained by the
exact and inequality well values, thus avoiding some inconsistencies during interpolation by
kriging under inequality constraints. Fault parameters are also explicitly incorporated in the
interpolation procedure. This geostatistical approach is used for depth estimation within the
“Jeffara de Medenine” aquifer system and is compared to classical kriging and evaluated
through the quality of estimation, the adopted assumptions and method limitations. Thus,
estimation procedures can be improved to build geometric models that describe as well as
possible the geological reality.
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1. Introduction

In southern Tunisia, good-quality water resources
are relatively rare and are not easily renewed due to the
semi-arid climate in this area. The lack of resources is
the result mainly of the significant demographic growth,
which has caused an increase in the demand for water
both for irrigation and for drinking. In addition, the area
now faces a serious problem of water-quality deteriora-
tion caused by considerable economic growth coupled
with overexploitation of water resources.

The aquifers supply the area with water of a salin-
ity varying from 1 to 7 g/l. The reasons for this rela-
tively high mineralization are marine intrusion,
brackish water intrusions drained from adjacent salty
systems and the proximity of hyper-saline water
systems like Sebkhas and Chotts.

The study area (Fig. 1), the “Jeffara de Medenine”,
includes a multi-aquifer system called the Zeuss Kou-
tine aquifer which is the main water resource in the
area. It is a vulnerable system and hence needs to be
further documented and monitored in order to pre-
serve it and improve its water quality.

One of the most important features that character-
ize this water system is its geological complexity, in
particular due to the intense tectonics affecting
the various aquifers. In general, fault systems influence
communication between reservoirs. For a better under-
standing of the water flow paths within the faulted

reservoir units, it is imperative to build the reservoir
architecture of the site where the geometry of the units
and their spatial extensions are established.

Geometric modelling of each water reservoir unit
implies that the spatial distribution of the depth
variable within each surface boundary is estimated.
However, high spatial variability of “depth” within a
faulted surface boundary and sparse data network are
known to be major causes of uncertainty.

Our major goal in this study is to investigate
whether geostatistical techniques can accurately recon-
struct the unknown surfaces on the basis of values
observed at a small number of points in the study
area. Classical kriging was first applied, to account for
the spatial continuity of the target horizons through
the variogram analysis. Kriging also allows explicit
integration of the fault system knowledge in the
estimation process. Then, an original kriging variant,
called kriging with inequality constraints was tested
to avoid losing the information from wells which had
not reached the target horizon. Although not new, to
our knowledge, this methodology has not been
applied previously to the modelling of aquifers.

2. Materials and methods

The construction of a geologically consistent reser-
voir model involved the following major steps: (i)

Fig. 1. Map of the studied domain and data location.
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creation of a structural framework, (ii) delineation of
the reservoir and (iii) integration of different types of
information through geostatistical techniques to model
the surfaces bounding the reservoir units using the
ISATIS software [1].

2.1. Data base

Data and information were obtained from different
sources and studies [2–6]: 16 seismic cross-sections,
four petroleum wells as well as 49 water wells and
boreholes (Fig. 1) were used to provide direct infor-
mation on the surface and subsurface geology needed
for the spatial modelling of the different bounding
surfaces.

Each data type has its specific features, which
influence how it is integrated into the modelling
process and affect the quality of the model. However,
these raw data alone would be useless without careful
and methodical processing and interpretation. Geore-
ferencing is a crucial step in the modelling process,
whereby all available information is combined and
organized in a common coordinate system: it has to
cover the entire studied zone and to be precise
enough not to lose or distort information.

2.2. Geologic exploration: building a structural framework

The proposed modelling methodology starts with a
careful geological analysis of (i) the lithostratigraphic
units that compose the aquifer system within the study
area and (ii) fault structures that affect the different
reservoir units. The objective is to improve the reser-
voir characterization of the aquifer system in order to
define the geometric parameters required for the
geometric modelling steps.

The multi-aquifer system includes all the layers
from the Jurassic to the Mio-plio-quaternary. The
carbonate formations of the Jurassic, the Albo-Aptian,
the Turonian and the lower Senonian constitute a
multilayer hydrogeological unit [3,4]. The lateral
extent of the different aquifers at various depths is
controlled by the structural evolution of the area and
its vicinity during Jurassic to present times [2,4]. The
connections between aquifers are possible either
through faults or by vertical leakage.

Two main fault classes were identified: (i) the
large-scale faults inferred from seismic data [5,6] and
(ii) the small-scale faults observed on geological
cross-sections reconstructed through lithostratigraphic
correlation using boreholes (Fig. 2) or documented on
geological maps [7].

Figs. 2 and 3 show the most prominent fault
structures identified and correlated in the studied
area, they display a NW-SE striking trend with throws
towards the NE. These faults run from SW to NE: the
Tebaga fault, the Medenine fault, the Mareth fault, the
Zarat fault, the Lella Gamoudia fault and the Oum
Zassar fault. Several minor, unevenly spaced faults in
the studied field were mapped on the geologic cross-
sections. The main ones were correlated and they are
the Ksar Chrarif fault, the Zeuss fault and the Koutine
fault. They display a NE-SW striking trend with
throws towards the NW for the Ksar Chrarif and
Koutine faults and to the SE for the Zeuss faults. All
these faults created the compartmentalization of the
area and built up a system of horst and graben struc-
tures, within a globally down-tilted domain towards
the NE.

This fault classification has several important
implications from a modelling point of view, as it
allows a definition of the fault hierarchy that has to be
included in the modelling procedures.

2.3. Geostatistical modelling

A consistent architectural model is constituted not
only of the surfaces that fit the observation data, but also
of correct relationships between the geological inter-
faces. For this purpose, classical kriging and kriging
with inequality constraint estimates are compared and
evaluated in order to build geometric models that reflect
as well as possible the geological reality.

These kriging estimators are but variants of the
basic linear regression estimator. They are based on
the regionalized variable theory where the value of a
variable z(x) at a point with coordinates vector x is
considered a realization of a random variable Z(x).
The collection of spatially correlated random variables
{Z(x), x 2 R}, where R denotes the study region, is
termed a random function [8].

2.3.1. Ordinary kriging

We consider the problem of estimating the value
of the target variable “depth”, at any unsampled loca-
tion x, of a bounding surface using a given neighbour-
hood fZðXaÞa ¼ 1; . . . ; ng, at the same bounding
surface. The kriging estimator is a linear regression
estimator Z�ðxÞ defined as:

Z�ðxÞ ¼
Xn

a¼1

kaZðxaÞ ð1Þ

where ka is the weight assigned to ZðxaÞ [9].
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The weights are chosen so as to minimize the esti-
mation error variance:

r2
j ¼ Var½Z�ðxÞ � ZðxÞ� ð2Þ

under the constraint of unbiasedness of the estimator.
These weights are obtained by solving the linear equa-
tions of the kriging system. Kriging requires the use
and hence the estimation and modelling of a vario-
gram function that describes the spatial variability of
the random variable ZðxÞ:

cðhÞ ¼ 1

2
Var½ZðxÞ � Zðxþ hÞ� ð3Þ

where h is the distance separating data Z(x) and
Z(x + h).

2.3.2. Kriging with inequality constraints

To enhance the estimation of the target variable
“depth”, kriging with inequality constraint makes it
possible to use the information obtained from wells
not intercepting the target horizon.

Accordingly as shown on Fig. 4, kriging with
inequality constraints can take into account “hard
data” consisting of exact values: ZðxaÞ ¼ za; a ¼ 1;
. . . ;m; and complementary “inequality data”
ZðxaÞ 2 Aa ¼ ½aa;�1½; a ¼ mþ 1; . . . ; n, where the

Fig. 3. Fault network correlated from seismic and geological data.

Fig. 2. Geologic cross-section within the study area.

2012 H. Chihi et al. / Desalination and Water Treatment 52 (2014) 2009–2016



datum value za is only known to lie within an
interval Aa.

The method is based on a two-step process.
First, inequality data have to be replaced by a new

set of exact data consistent with the original exact
points. The way to replace the intervals is to calculate
the conditional expectation of the target variable at
each inequality data location ZCE

a . To calculate the
conditional expectation, a Gibbs Sampler [10] tech-
nique is used to simulate, for each inequality, a given
number of realizations of the target variable according
to its variogram model and conditioned by the inter-
vals and the exact data [8]. Then, the average value of
the realizations at each inequality data point is calcu-
lated. These average values are an approximation to
the conditional expectation.

The simulation of ZCE
a ; a ¼ mþ 1; . . . ; n conditionally

on: Zb ¼ zb; 1 � b � m and Zb 2 Ab;mþ 1 � b � n
including b ¼ a is implemented by repeating the follow-
ing sequence:

(1) Assign a random value za within Aa ¼ ½aa;�1½
for each site xa; a ¼ mþ 1; . . . ; n

(2) Select an index a0 at random in the set of
inequality data {a ¼ mþ 1; . . . ; n}.

(3) Ignore the value at this site and estimate it by
kriging from the current values zb at all other
sites; also compute the corresponding kriging

variance r�2a0.
(4) Replace the value at this site by the kriged

value plus a simulation of the error, condition-
ally on the inequality data at xa0: the new

za0 ¼ ZK
a0 þ r�a0 U where U is a standard normal

random variable chosen so that za0 honours the
inequality.

(5) Go back to 2, and loop many times.
(6) Calculate the conditional expectation at this site

by averaging the set of simulations za0 ða ¼ mþ
1; . . . ; nÞ. The conditional expectation ZCE

a0 is in

fact the most probable value of the variable at the
inequality data locations.

ZCE
a0 ¼ E½ZðxÞnZa 2 Aa08a� ¼

X

b

kaE½ZbnZa 2 Aa08a� ð4Þ

Then, the second step is to estimate the target vari-
able using ordinary kriging with both the exact data
and the conditional expectation values that replace the
inequalities. It is also possible to consider the condi-
tional variance r�2a derived from the simulations (step
6) as a variance of measurement error. This has the
advantage of giving less confidence to the conditional
expectation values than to the exact data. However, it
should be noted that, by doing that, the resulting vari-
ance may still be too optimistic; indeed, we do not
account for the fact that the errors made when replac-
ing inequalities by the conditional expectation are not
independent.

3. Results

The results shown are for the estimation of the
Turonian upper boundary. Remember that our case
study is characterized by two main features that make
the modelling task relatively difficult: (i) the spatial
distribution of values is random, in that some obser-
vations are close to each other and some others are
scattered. (ii) Geometric fault parameters compartmen-
talize the reservoir surface into subdomains with
different data density. These two features are two
major causes of uncertainties. An important contribu-
tion of geostatistics is the assessment of the uncer-
tainty on unsampled values that usually helps to
handle compartments with different data density and
thus to choose the relevant kriging method.

A key step before prediction is the modelling of
the spatial distribution of Turonian depth variable.
The experimental variograms were calculated in two
specific directions (Fig. 5): along the normal NW-SE
faults, the major continuity direction; and across the
faults that is along the SW-NE subsidence direction.
This variogram shows an extremely high variability
owing to the fact that it may include couples where x
and x + h are taken in two different compartments.

The directional variograms show an anisotropic
behaviour: (i) A stationary structure expressed in the
NW-SE direction. This locally stationary structure is

Fig. 4. Geological cross-section showing the available data
for the Top Turonian reservoir:
exact data: borehole data corresponding to the geological
interfaces: Z(x)A. Mjirda =�409m,
inequality data: information provided by the end of
drilling: Z(x)Zeuss 1 <�200m.
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related to the depth variability, at a small scale, within
each compartment. (ii) A drift structure expressed in
the NE-SW direction. The drift structure reflects the
continuous increase in the depth within the overall
down-tilted study area towards the NE direction.

For each target location, the neighbouring samples
must be located within the considered compartment,
between the fault boundaries. Therefore, the model
parameters must be inferred from variogram values
from only a few distance classes. Accordingly, the
variogram has to be fitted on the basis of their behav-
iour towards small and medium distances, only the
stationary behaviour is taken into account for depth

interpolation. The variogram was fitted with an
anisotropic stationary spherical structure with a range
of 10,000m along the NW-SE direction and 5,000m
along the NE-SW direction and a sill of 2000m:
cðhÞ ¼ 2000 spherical ð10000N120; 5000N30Þ.

Ordinary kriging was applied using only exact
data. Fig. 6(A) shows the kriged depth map of the top
Turonian reservoir. It shows that ordinary kriging
with local search neighbourhoods provides good
results in the central compartment where the data
density is high. This is confirmed by the low kriging
variance values (Fig. 6(B)). On the contrary, in the NE
compartments, ordinary kriging is inappropriate: there
are inconsistencies resulting from two special proper-
ties of the estimating procedures: (i) the first concerns
the neighbourhood information which has to be
restricted inside the compartment and (ii) the second
is the violation of the constraints at wells where the
horizon has not been reached by the boreholes.

The method of kriging with inequality constraints
makes it possible to take into account the constraint
information obtained from wells which have not inter-
cepted the target horizon. It makes the best use of the
available data and thus increases neighbourhood
information within each compartment. Fig. 7(A)
shows the depth map of the top Turonian reservoir. It
demonstrates that kriging, with a local search neigh-
bourhood, is successful in all the compartments of the
study area. In the NE compartments, the inequalities
are now adequately taken into account in the model-
ling process. Associated kriging variance values are
small even around the inequalities because, in the
present case, most inequalities correspond to wells
where the horizon has not been reached (depthP cer-
tain value). Consequently, the probable value for these
wells is close to the end of the borehole and the asso-
ciated kriging variance is small. As discussed in the
section above, obtained kriging variances might be

Fig. 5. Directional variograms of the Turonian Horizon.
N30: NE-SW directional variogram, N120: NW-SE
directional variogram.

Fig. 6. (A): Depth map of the Top Turonian reservoir calculated by ordinary kriging. Location of exact data (black crosses +)
and inequality data (pink circles ). (B): Kriging variance map.
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slightly underestimated as the correlation of errors is
ignored.

Fig. 8 presents a NE-SW cross-section intersecting
seven boreholes. Four of them are shown in black and
represent the exact data and three boreholes are
shown in pink and represent inequality data (the
depth values of the Top Turonian reservoir are indi-
cated for each borehole). This figure presents, as well,
in blue continuous line the interpolated surface using
ordinary kriging and in pink dashed line the interpo-
lated surface with inequality constraints. Large differ-
ences between the two estimators arise particularly at
A, B and C locations:

(1) In location A, ordinary kriging does not respect
the dip direction of the Zarat Fault. In fact, the
Zarat fault dips to the NE direction and not to the
SW and this is a physically inconsistent result.

(2) In location B, ordinary kriging cannot directly
handle the inequality constraints imposed by
Henchir Jdidi well, this measurement is ignored
and the surface is overestimated with a large
kriging variance.

(3) In Location C, ordinary kriging violates the
constraints at Smar well where the horizon has

not been reached by the borehole, the surface is
extrapolated with a large kriging variance.

Contrary to ordinary kriging, the constrained
kriging method incorporates both the exact and the
inequality data. It respects the dip direction at location
A and improves the estimation in B and C. Also,
kriging with inequality constraints provides a smaller
kriging variance in areas only informed with inequali-
ties (Fig. 6(A) and (B)).

4. Conclusions and perspectives

Characterizing aquifer systems in faulted settings
with scarce data is a challenging task. The “Jeffara
de Medenine” aquifer, in South-Eastern Tunisia, is a
case in point. The complex geological setting
required first a thorough review of the available data
in order to build a detailed structural framework that
constituted the fundamental part of the geometric
modelling. Afterwards, it was shown how appropri-
ate geostatistical modelling can provide suitable
estimates for the target faulted surface. The applied
kriging approach accurately integrated both exact

Fig. 7. (A): Depth map of the Top Turonian reservoir calculated by kriging with the inequalities method. Location of
exact data (black crosses +) and inequality data (pink circles ). B: Kriging variance map.

Fig. 8. Blue continuous line: Interpolated surface based on exact data only; Pink dashed line: Interpolated surface based
on exact and inequalities. Boreholes designed in black are exact data and boreholes designed in pink are inequalities, the
depth values are indicated for each borehole.
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data and inequality constraints, improving predic-
tions of each horizon.

To enhance the estimation of a given horizon, it
might be possible to incorporate the correlation
between successive horizons within a cokriging
approach. Although classical, this method is compli-
cated and requires further work in the present case as
the relationships between the different horizons may
vary from one geological compartment to another.

Improved procedures for estimating geologic inter-
faces make it possible to build geometric models that
reflect as well as possible the geological reality, which
results in a better assessment of water resources and
subsequently a better management of the aquifer
system.

Symbols

ZðxaÞ — Regionalized variable (depth), m

Z�ðxÞ — Z(x) estimator, m

cðhÞ — A variogram function that describes the spatial
variability of the regionalized variable ZðxÞ, m2

ka — Kriging weights

r2j — Kriging variance, m2

ZCE
a — Conditional expectation of ZðxaÞ, m

Aa — Inequality interval Aa ¼ ½aa;�1�
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[2] G. Busson, Le Mésozoı̈que saharien 1re partie: l’extrême-Sud

tunisien, Publications du Centre de Recherches sur les Zones
Arides (CNRS) [Part 1: The extreme Southern Tunisia, Publi-
cations of the Research Centre on Arid Zones (CNRS)], Paris,
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