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ABSTRACT

In this research, application of granular activated carbon prepared from Harmal seeds
residue as a new adsorbent for methylene blue (MB) removal from aqueous solutions was
investigated. Adsorption equilibrium and kinetic data were studied. The results demon-
strated that the equilibrium data were well represented by Langmuir isotherm model, with
maximum monolayer adsorption capacity of 1111.11mg/g. The dimensionless factor (RL)
revealed the favorable nature of this adsorption system. The kinetic data were found to
follow the pseudo-second-order kinetic model. Effect of initial concentration on the
adsorption mechanism of MB onto the prepared activated carbon was also investigated.

Keywords: Adsorption; Activated carbon; Methylene blue; Harmal seeds residue; Isotherm;
Kinetic

1. Introduction

Many industries, such as textile, paper, and plas-
tics, use dye in order to color their products and also
consume substantial amounts of water. As a result,
they generate considerable amounts of colored waste-
water. It is recognized that public perception of water
quality is greatly influenced by its color. Color is the
first contaminant to be recognized in wastewater. The
presence of very small amounts of dyes in water (less
than 1ppm for some dyes) is highly visible and unde-
sirable [1–3]. Since dyes have synthetic origins and
complex aromatic molecular structures, are inert and
difficult to biodegrade when discharged into waste
streams. Wastewater containing dyes is very difficult

to treat because dyes are resistant to environmental
conditions such as light, heat, and oxidizing agents.
From an environmental point of view, removal of syn-
thetic dyes is of great concern, since some dyes and
their degraded products may be carcinogenic and
toxic and, consequently, their treatment cannot
depend on biodegradation alone. This aspect has
always been overlooked in their discharge [4].

Methylene blue (MB) as a cationic dye is the most
commonly used substance for dying cotton, leather,
plastics, paper, wood, and silk, as well as for the pro-
duction of ink and coping paper in the office supplies
industry. The chemical structure of MB (C16H18N3SCl)
is shown in Fig. 1. MB is a moderate size organic
molecule with ionic formula weight of 319 g/mol,
cross-sectional area of 120 Å2, and molecular size of
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13–15 Å. MB can cause eye burns which may be
responsible for permanent injury to the eyes of human
and animals [5]. On inhalation, it can give rise to short
period of rapid or difficult breathing, while ingestion
through mouth produces a burning sensation and
may cause nausea, vomiting, profuse sweating, mental
confusion, and methemoglobinemia. Acute exposure
to MB can cause increased heart rate, vomiting, shock,
cyanosis, jaundice, quadriplegia, and tissue necrosis in
human [4,6]. Therefore, treatment of effluents contain-
ing such dye becomes environmentally important due
to its harmful impacts on receiving water.

During the past decades, several physical, chemi-
cal, and biochemical decolorization methods have
been reported. Among the numerous techniques of
dye removal, adsorption gives the best results as it
can be used to remove different types of coloring
materials [7–9].

Most commercial systems currently use activated
carbon as sorbent to remove dyes from wastewater
because of its excellent adsorption ability. However,
commercially available activated carbons are still con-
sidered as expensive materials in many countries due
to the use of nonrenewable and relatively expensive
starting materials such as coal, which is unjustified in
pollution control applications. Therefore, in recent
years, a growing research interest has been prompted
in production of activated carbons from renewable
and cheaper precursors [10–16]. If the raw material is

hard enough, hard particles, granular activated carbon
can be obtained that has good resistance and is not
easily broken or crushed during oxidation, washing,
and drying and also can be used in continuous
adsorption processes. Granular activated carbon is
used as column filler for gas or liquid applications
and is regenerated after use. This makes granular acti-
vated carbon a more versatile and expensive adsor-
bents [17–19].

Harmal (Peganum harmala) is a perennial plant that
has various medical applications. Harmal is used as
an analgesic and antiinflammatory agent. In Yemen, it
is used to treat depression. Harmal is a central
nervous system stimulant and a “reversible inhibitor
of MAO-A (RIMA),” a category of antidepressant.
Harmal has “antibacterial activity,” including antibac-
terial activity against drug-resistant bacteria. Its round
seed capsules have three chambers and carry more
than 50 seeds (Fig. 2). When its dried capsules or
seeds (known in Persian as Esphand) are heated over
red hot charcoal or gas flame, they explode with a
little popping noise and release a fragrant smoke. The
released smoke kills algae, drug-resistant bacteria,
intestinal parasites, and molds [20–25].

Harmal seeds is commonly used in many countries
and a large amount of its residue is produced which
can be considered as a potential cheap precursor for
making activated carbon. Harmal seeds residue is a
household waste available in huge amount in Iran
and many other countries.

This study focused on preparation of Harmal
seeds residue-based activated carbon and evaluation
of its adsorption potential for MB removal from aque-
ous solutions. The adsorption equilibrium and kinetic
data were then studied to understand the adsorption
mechanism of MB molecules onto the prepared
activated carbon.

Fig. 1. Chemical structure of MB.

Fig. 2. (a) Harmal seed capsules and (b) Harmal seeds [21].
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2. Experimental

2.1. Materials

The Harmal seeds residue used in this investiga-
tion was collected from household. Concentrated
nitric acid (HNO3: 65%, Merck) was used in activation
procedure (acid treatment). MB and distilled water
were used to prepare all the solutions.

2.2. Adsorbent preparation

As mentioned before, when Harmal seeds are
heated, they explode with a little popping noise and
release a fragrant smoke. Black materials discarded
after using is called Harmal seeds residue. The
Harmal seeds residue used in this investigation was
collected from household. Two grams of the Hamal
seeds residue were soaked in 100ml of concentrated
nitric acid, for 48 h at room temperature. The treated
residue was washed using deionized water several
times, then dried at 105˚C for 24 h, and stored in bot-
tle for use, without crushing.

2.3. Characterization of prepared activated carbon

Scanning electron microscope (SEM, Philips: XL30)
was used for analysis of the surface morphology of
the prepared activated carbon and to verify the
presence of porosity. X-ray diffraction analysis (XRD,
Philips: 1480) was conducted to investigate the chemi-
cal structural of the prepared activated carbon. The
chemical compositions of the prepared activated car-
bon were obtained using elemental analysis (Analyzer,
Skalar). Surface functional groups of the Harmal seeds
residue and prepared activated carbon were deter-
mined by Fourier transform infrared spectroscopy
(FTIR, Spectrum: RX1).

2.4. Batch adsorption studies

Batch adsorption experiments were carried out by
adding 60mg of prepared activated carbon with
granular shape into 50ml of MB solution at different
initial MB concentrations (200, 400, 800, 1,600, and
3,200ppm). All the experiments were carried out at
25˚C and initial pH of about 7. UV–visible spectropho-
tometer (UV/VIS, Metertech: SP8001) was employed
to determine MB concentration, at a wavelength of
670 nm. Each experiment was duplicated under
identical conditions. The amount of adsorption at
equilibrium, qe (mg/g), was calculated by the
following equation:

qe ¼ ðC0 � CeÞV
w

ð1Þ

where C0 is the initial MB concentration (mg/l), Ce is
the equilibrium MB concentration (mg/l), V is the
volume of MB solution (l), and w is the mass of dry
adsorbent used (g).

2.5. Batch kinetics studies

Procedure of kinetics experiments was identical to
that of adsorption experiments. The aqueous samples
were taken at preset time intervals and MB concentra-
tion was similarly measured. The adsorption amount
at time (t), qt (mg/g), was calculated using the follow-
ing equation:

qt ¼ ðC0 � CtÞV
w

ð2Þ

where C0 is the initial MB concentration (mg/l), Ct

(mg/l) is the MB concentration at time t, V is the vol-
ume of MB solution (l), and w is the mass of dry
adsorbent used (g).

3. Results and discussion

3.1. Characterization of Harmal seeds residue-based
activated carbon

As mentioned before, the Harmal seeds residue-
based activated carbon has granular shape with
dimensions of about (2mm� 2mm� 3mm). They
have relatively high resistance and are not easily
crushed during oxidation, washing, drying, and also
adsorption processes. Hence, using the Harmal seeds
residue-based activated carbon with granular shape as
adsorbent, the problem of carbon removing from
water after adsorption process (by centrifuging) is
eliminated.

SEM is widely used to study morphological fea-
tures and surface characteristics of the adsorbent
materials. Fig. 3 shows the surface SEM images of the
Harmal seeds residue-based activated carbon. As can
be observed, many pores with honey comb structure
are clearly found on the surface and inside of the pre-
pared activated carbon. The developed pores led to
high surface area and porous structure of the Harmal
seeds residue-based activated carbon.

A typical XRD pattern of the Harmal seeds resi-
due-based activated carbon is shown in Fig. 4, where
there are only two broad small diffraction peaks at
around at 23.5˚ and 43˚, which are attributed to the
presence of carbon [26,27]. Also, there are not certain
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sharp peaks in the XRD pattern, suggesting that the
prepared activated carbon exists as amorphous mate-
rial without any ash. As reported in the literature, the
existence of sharp peaks in the XRD pattern can be
attributed to the existence of residual ash in carbon
[28]. Acid treatment (with HNO3) can remove inor-
ganic components in carbon such as ash containing K,
Ca, Fe, S,… resulting in higher surface area and pore
volume [29,30].

The results of the elemental analysis of the Harmal
seeds residue-based activated carbon showed that the
prepared activated carbon contains mainly carbon
(73%) and oxygen (22%) with small amounts of hydro-
gen and nitrogen.

Fig. 5 displays the FTIR spectra of Harmal seeds
residue and Harmal seeds residue-based activated
carbon. As can be observed, the FTIR spectrum of
Harmal seeds residue-based activated carbon displays
some apparent peaks after acid treatment, indicating
formation of oxygen-containing functional groups
onto the surface of Harmal seeds residue-based

activated carbon: hydroxyl groups (–OH) (3,225 cm�1),
carboxyl groups (–COOH) (1,600 cm�1), and carbonyl
groups (C=O) (1,456 cm�1) [31]. The characteristic
peaks at approximately 1,720 and 3,225 cm�1 are
attributed to the C=O and O–H bonds which indicate
formation of the carboxyl groups (–COOH) on the sur-
face of prepared activated carbon. The increased
intensity of the peak at 3,225 cm�1 after acid treatment
indicates formation of the hydroxyl groups (–OH) on
the surface of prepared activated carbon [32–36].
These functionalized groups can provide a large num-
ber of chemical adsorption sites and thereby can
increase the adsorption capacity of prepared activated
carbon [37–42]. Meanwhile, the hydrophilic properties
of these functional groups improve the dispersivity of
prepared activated carbon in aqueous solutions [42].

3.2. Effect of contact time and initial MB concentration on
adsorption equilibrium

Fig. 6 shows effect of contact time on adsorption
capacity at various initial MB concentrations at 25˚C.
The amount of MB adsorbed onto the prepared acti-
vated carbon increases with time and then reaches to
equilibrium. Also, the equilibrium time increases sig-
nificantly with increasing initial MB concentration.
Obviously, at higher initial MB concentrations, effect
of the concentration boundary layer is more signifi-
cant, and consequently, longer time is needed to attain
equilibrium due to the more MB molecules. As shown
in Fig. 6, the contact time needed for the MB solutions

Fig. 3. Surface SEM image of the Harmal seeds residue-
based activated carbon.

Fig. 4. XRD pattern of the Harmal seeds residue-based
activated carbon.

Fig. 5. FTIR spectra of (a) Harmal seeds residue and (b)
Harmal seeds residue-based activated carbon.
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to reach in equilibrium at various initial MB
concentrations is within 2–24 h for the Harmal seeds
residue-based activated carbon.

The amount of MB adsorbed at equilibrium reflects
the maximum adsorption capacity (qe) of the adsor-
bent under those operating conditions. In Fig. 6, it can
be observed that with increasing initial MB concentra-
tion from 200 to 3,200 ppm, the adsorption capacity
increases from 158 to 1,083mg/g. It can be said that,
at higher initial MB concentration, the mass transfer
driving force becomes larger, and hence resulting in
more adsorption of MB molecules [5,43].

3.3. Adsorption isotherms

Equilibrium adsorption isotherm is basically
important to describe how solutes interact with adsor-
bents, and is critical in optimizing the use of adsor-
bents [44]. Fig. 7 shows equilibrium adsorption
isotherm of MB onto the Harmal seeds residue-based
activated carbon.

Adsorption isotherm study was carried out using
Langmuir and Freundlich isotherm models.

Langmuir isotherm was used successfully to
characterize the monolayer adsorption process [45].
The Langmuir isotherm is given by the following
equation:

Ce

qe
¼ 1

Q0b
þ 1

Q0

Ce ð3Þ

where Ce is the equilibrium adsorbate concentration
(mg/l), qe is the amount of adsorbate adsorbed per
unit mass of adsorbent (mg/g), and Q0 and b are the

Langmuir constants related to adsorption capacity and
adsorption rate, respectively. When Ce=qe is plotted
against Ce; a straight line with slope of 1=Q0 is
obtained (Fig. 8(a)). The Langmuir constants (calcu-
lated using Eq. (3)) are listed in Table 1.

Fig. 6. Effect of initial MB concentrations on adsorption
capacity of MB onto the Harmal seeds residue-based
activated carbon.

Fig. 7. Equilibrium adsorption isotherm for adsorption of
MB onto the Harmal seeds residue-based activated carbon.

Fig. 8. (a) Langmuir and (b) Freundlich adsorption
isotherms for adsorption of MB onto the Harmal seeds
residue-based activated carbon.
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The essential characteristics of Langmuir isotherm
can be expressed in terms of a dimensionless equilib-
rium parameter (RL) [45]. This parameter is defined
as:

RL ¼ 1

1þ bC0

ð4Þ

where b is the Langmuir constant and C0 is the
highest initial MB concentration (mg/l). The value of
RL indicates the type of the isotherm to be either
unfavorable (RL > 1), linear (RL = 1), favorable
(0 <RL < 1) or irreversible (RL = 0).

Freundlich isotherm is a semi-empirical equation
based on adsorption occurred on heterogeneous
surfaces [45]. The well-known logarithmic form of
Freundlich isotherm is given by the following
equation:

log qe ¼ logKF þ 1

n

� �
logCe ð5Þ

where Ce is the equilibrium adsorbate concentration
(mg/l), qe is the amount of adsorbate adsorbed per
unit mass of adsorbent (mg/g), and KF and n are the
Freundlich constants related to adsorption capacity
and adsorption rate, respectively. Plot of log qe vs.
logCe gave straight line with slope of 1=n, as shown
in Fig. 8(b). Accordingly, the Freundlich constants
(calculated using Eq. (5)) are listed in Table 1.

Table 1 summarizes all the constants and correla-
tion coefficients of Langmuir and Freundlich isotherm
models. Applicability of the isotherm models to
describe the adsorption process was judged by the
correlation coefficient (R2) values. As observed in
Table 1, Langmuir model agrees well with the experi-
mental data, with the correlation coefficient values
being close to one, as compared with Freundlich
model. Also, the obtained RL values indicate that
Langmuir isotherm model is favorable for adsorption
of MB onto the Harmal seeds residue-based activated
carbon. Conformation of the experimental data with
Langmuir isotherm equation indicates the homoge-
neous nature of Harmal seeds residue-based activated

carbon surface, i.e. each MB molecule/Harmal seeds
residue-based activated carbon has equal adsorption
activation energy. Similar observation was reported by
Tan et al. [44] and Hameed et al. [4]. The results also
demonstrated formation of monolayer coverage of MB
molecules to the outer surface of prepared activated
carbon with maximum monolayer adsorption capacity
of 1111.11mg/g.

Since the adsorption process of MB was well
described by Langmuir isotherm model, the maximum
monolayer adsorption capacity (for complete mono-
layer coverage) could be used to evaluate the available
surface area of the prepared activated carbon [46]. The
following formula was used to compute this surface
area (S, m2/g):

S ¼ NA � Am �Q0

MW � 1000
ð6Þ

where Q0 is the maximum monolayer adsorption
capacity (mg/g), NA is the Avogadro’s number, MW is
the molecular weight of MB (319.86 g/mol), and Am is
the area occupied by an adsorbed MB molecule
(120 Å2). The calculated surface area of the prepared
activated carbon is 2510.68 m2/g. For comparison, the
range of surface area in commercial activated carbons
is 2,000–5,000 m2/g.

3.4. Adsorption kinetics

In order to analyze the adsorption mechanism of
MB molecules onto the Harmal seeds residue-based
activated carbon, three kinetic models including the
pseudo-first-order, the pseudo-second-order, and
the intraparticle diffusion models were applied to fit
the experimental data under different initial MB
concentrations.

The rate constant of adsorption can be determined
using the pseudo-first-order equation given by
Lagergren and Svenska [47] as:

lnðqe � qtÞ ¼ ln qe � k1
2:303

t ð7Þ

Table 1
Langmuir and Freundlich isotherm model parameters and correlation coefficients for adsorption of MB onto the Harmal
seeds residue-based activated carbon

Models Langmuir Freundlich

Q0 (mg/g) b (L/mg) RL R2 KF 1=n R2

1111.11 0.02 0.02 0.99 107.99 0.34 0.84
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where qe and qt are the amounts of adsorbate
adsorbed per unit mass of adsorbent (mg/g) at
equilibrium and at time t (min), respectively, and k1
(min�1) is the rate constant of first-order adsorption.

The pseudo-second-order equation [48] based on
equilibrium adsorption can be expressed as:

t

qt
¼ 1

k2q2e
þ 1

qe
t ð8Þ

where k2 (g/mgmin) is the rate constant of the
second-order adsorption.

The slope and the intercept of each linear plot in
Fig. 9(a) and (b) are used to calculate the adsorption
rate constants (k1 and k2) and the amount of
adsorption in equilibrium (qe). The calculated kinetics

parameters and the correlation coefficient (R2) values

of the two kinetics models are listed in Table 2. As
can be observed, the correlation coefficient values of
the pseudo-second-order kinetics model are higher
than that of the pseudo-first-order kinetics model.
Also, the experimental qe values are closer to qe values
calculated from the pseudo-second-order kinetics
model. Accordance of the experimental data with the
pseudo-second-order kinetics model indicates that the
adsorption of MB molecules onto the Harmal seeds
residue-based activated carbon is controlled by chemi-
cal adsorption [43,44,49–52]. In chemical adsorption, it
is assumed that the adsorption capacity is propor-
tional to the number of active sites occupied on the
adsorbent surface.

As can be observed in Table 2, the experimental
data agree also with the pseudo-first-order kinetic
model especially at higher initial concentration of MB,

Fig. 9. (a) Pseudo-first-order, (b) Pseudo-second-order, and (c and d) Intraparticle diffusion models for adsorption of MB
onto the Harmal seeds residue-based activated carbon.
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which indicates that adsorption of MB onto the
Harmal seeds residue-based activated carbon is a
diffusion-based process [52,53].

The probability of intraparticle diffusion can be
explored by using the intraparticle diffusion model
[54]. The intraparticle diffusion model is expressed by:

qt ¼ kpt
1=2 þ C ð9Þ

where kp (mg/gh1/2) is the intraparticle diffusion rate
constant that is obtained from the slope of the straight

line of qt vs. t1=2 (Fig. 9(c)). The calculated intraparticle
diffusion model parameters for MB adsorption onto
the Harmal seeds residue-based activated carbon
under different initial MB concentrations are listed in
Table 2.

As can be observed, the correlation coefficient (R2)
values and also the intraparticle diffusion rate constant
(kp) values increase with increasing initial MB concen-

tration. This can be explained by the fact that at higher
initial concentration, the mass transfer driving force is
larger, and hence this results in higher diffusion rates
of MB within the pores of adsorbent. In other words,
MB adsorption onto the prepared activated carbon
takes place probably via chemical adsorption until the
surface functional sites are fully occupied; thereafter,
MB molecules diffuse into the pores of the adsorbent
for further chemical adsorption [1,34,48,55].

The obtained results demonstrate that kinetics of
adsorption varies with initial MB concentration. At
lower initial MB concentration, adsorption is
controlled by chemical adsorption, and to some extent
intraparticle diffusion, while at higher initial MB
concentration, besides chemical adsorption, intraparti-
cle diffusion is a key mechanism governing the
adsorption process [50].

It must be mentioned that plotting qt vs. t1=2 pro-
vides an indication of the dependency of adsorption

on intraparticle diffusion. If the plot produces a
straight line, then the adsorption process is controlled
by intraparticle diffusion only. If it exhibits multi-lin-
ear plots, then there are two or more steps affecting
the adsorption process. It is clear from Fig. 9(d) that
the removal of MB by Harmal seeds residue-based
activated carbon occurs in two different steps as the
plot contains two different straight lines. The first line
from 0 to 2 h is attributed to the fast diffusion of the
MB molecules from the aqueous phase to the adsor-
bent surface. The second line from 2 to 5 h is due to
the intraparticle diffusion. This confirms that the
adsorption of MB by the prepared activated carbon is
a multi-step process and involved adsorption to the
external surface and diffusion into the pores of the
Harmal seeds residue-based activated carbon. The
mechanism of MB removal by adsorption is assumed
to involve the following steps: (1) migration of MB
from the bulk solution to the external surface of
adsorbent; (2) diffusion of MB through the boundary
layer to the external surface of adsorbent; (3) adsorp-
tion of MB at an active site on the surface of adsor-
bent; and (4) intraparticle diffusion and adsorption of
MB through the Harmal seeds residue activated car-
bon particles [54].

Table 3 presents a comparison of adsorption capac-
ities of MB on a commercial activated carbon and the
activated carbon derived from Harmal seeds residue
(this work) and other agricultural and industrial
wastes. As can be observed, the activated carbon pre-
pared in this work has larger adsorption capacity
compared with the others based on the data obtained
from the literature. The possibility of formation of dye
dimmers, trimmers, etc. and consequently precipita-
tion from the solution due its high initial concentra-
tions (>3,000 ppm) may be partially responsible for
high adsorption capacity values, although no precipi-
tation was visually observed.

Table 2
Pseudo-first-order, pseudo-second-order, and intraparticle diffusion models parameters at different initial MB
concentrations

Initial MB
Cons.
(ppm)

qe;exp
(mg/
g)

Pseudo-first-order
kinetic model

Pseudo-second-order
kinetic model

Intraparticle diffusion model

qe,cal
(mg/
g)

k1
(h)

R2 qe,cal
(mg/
g)

k2
⁄10�4

(g/gh)
R2 qe,cal

(mg/
g)

kp
(mg/gh1/
2)

C R2

200 158.33 196.40 2.17 0.93 167.74 33.15 0.99 90.43 34.23 31.14 0.67

400 316.66 389.85 1.35 0.94 332.43 9.46 0.99 281.50 73.32 27.52 0.85

(Continued)
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4. Conclusion

Harmal seeds residue-based activated carbon was
prepared and used as a practical adsorbent for MB
removal from aqueous solutions. The results demon-
strated that adsorption capacity of prepared activated
carbon increases with increasing initial MB concentra-
tion. Adsorption behavior of MB molecules onto the
prepared activated carbon match well with Langmuir
isotherm model with maximum monolayer adsorption
capacity of 1111.11mg/g. Adsorption kinetics follows
the pseudo-second-order kinetic model. At higher ini-
tial MB concentrations, besides chemical adsorption,
intraparticle diffusion is a key mechanism governing

the adsorption process. Following the above results,
the Harmal seeds residue-based activated carbon can
be recommended as an effective adsorbent for MB
removal from wastewater.
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