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ABSTRACT

We propose a new cascade control structure using a systematic tuning rule to enhance the
treatment performance of nitrogen and ammonium removal in a predenitrifying activated
sludge process. The primary outer control loop has a model predictive control (MPC) con-
troller and the secondary inner loop utilizes two proportional–integral (PI) controllers,
which form a cascade MPC–PI controller. The control objective is to simultaneously control
the nitrate and ammonium concentrations in the effluent, which can decrease the effects of
influent disturbances existing in a wastewater treatment process while maintaining better
effluent quality. The prediction error method is employed to identity an accurate process
model for the MPC controller design. Moreover, the control performance assessment (CPA)
technique is proposed to tune the parameters of the outer MPC controller. Three tuning sce-
narios with different output weights in the MPC controllers are considered and the best
tuning parameter is obtained using a closed-loop potential approach in the field of CPA.
The results of the plant performances with respect to the three tuning cases demonstrate the
effectiveness of the proposed controller tuning method based on CPA.

Keywords: Cascade control structure; Control performance assessment; Effluent ammonium
control; Model predictive control; Wastewater treatment process

1. Introduction

At present, effective control and modeling of
wastewater treatment plants (WWTPs) have become a
subject of intense interest [1–3]. The main control
objectives in WWTPs are (1) meeting stricter effluent
quality standards, (2) maintaining high-control perfor-
mance under changing influent loads and other exter-
nal disturbances, and (3) minimizing energy
consumption [1]. Many control strategies, such as dis-

solved oxygen (DO) control, volume control, and
advanced control, have been proposed and applied in
both simulation and full-scale studies [4].

Phosphorus and nitrogen are main nutrients of con-
cern in wastewater discharges. Several studies have
been conducted to control the nitrogen levels. Cho
et al. [5] proposed a cascade proportional–integral (PI)
control strategy to simultaneously control the nitrate
concentrations in the second anoxic reactor and the last
biological reactor in a WWTP, where external carbon
dosage was used to control nitrate concentrations.
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This cascade control structure has a key advantage that
it could significantly decrease the fluctuation in the
effluent nitrate concentrations. Zarrad et al. [6] pro-
posed two advanced control strategies to improve the
monitoring of an activated sludge process. The first
strategy was an optimal linear quadratic Gaussian con-
troller and the second one was a disturbance-accom-
modating controller. Wahab et al. [7] investigated a
multivariable PI control structure to improve closed-
loop control performance and to reduce loop interac-
tions for a WWTP with a predenitrifying step. In addi-
tion, a simple tuning method based on step and
frequency response tests was proposed for the design-
ing of the multivariable PI controllers.

Model predictive control (MPC), which is a widely
used advanced control strategy in many industrial
processes, has also been applied to the control of
WWTPs as reported in a considerable amount of liter-
ature [8–13]. Stare et al. [8] compared and evaluated
several control strategies, including constant manipu-
lated variables control, PI controllers with and without
feed-forward control, and MPC controllers, for the
nitrogen removal in a WWTP. Their research indicated
that the MPC strategy is advantageous only when the
influence of an influent disturbance to the plant is
huge and tight effluent standards are imposed. Hole-
nda et al. [9] investigated the effects of MPC-tuning
parameters including sampling time, prediction
horizon, and input weight on the aeration control per-
formance of an activated sludge wastewater treatment
process. Nonlinear MPC and MPC with feed-forward
compensation control structures have been proposed
and compared for a wastewater treatment process
[10,11]. In addition, Liu and Yoo [12] proposed a
cascade MPC controller to reduce the effluent nitrate
concentration of a WWTP. Ostace et al. [13] proposed
to use MPC for the advanced control of a WWTP on
the basis of an enhanced activated sludge model no. 1
(ASM1) and a reactive secondary settler. In the current
work, a modified cascade control structure with an
MPC controller, which can be directly extended from
a single-input–single-output (SISO) process to a multi-
input–multi-output (MIMO) process, is employed to
simultaneously control more process variables in an
activated sludge process.

Most studies in the literature focus on the control
problems of nitrate and phosphorus removal in
WWTPs. Gernaey and Jorgensen [14] developed a new
benchmark model for anaerobic–anoxic–oxic processes
(A2/O). The A2/O benchmark can model the removal
process of biological nitrogen and biological phospho-
rus with a similar plant layout to the benchmark sim-
ulation model 1 (BSM1) [15]. However, the effluent
ammonium should also be effectively controlled

because this component is another important
compound that not only reduces DO levels, but also is
toxic to the animals near polluted rivers. Carlsson and
Rehnstrom [16] developed a cascade PI controller to
control the effluent ammonium concentrations in
BSM1. Making use of the A2/O benchmark model, Liu
et al. [17] proposed a multi-objective optimization
(MOO) approach to determine the optimal set points
of a cascade PI controller used for controlling the
effluent ammonium concentrations.

In this study, a new cascade MPC control strategy
is proposed to maintain the concentrations of effluent
nitrate and effluent ammonium within their limits in a
simulated wastewater treatment process. The proposed
cascade controller consists of a multivariate MPC con-
troller as the primary controller and two PI controllers
as secondary controllers. On the basis of the routine
closed-loop data and the variance of output errors,
control performance assessment (CPA) technique is
used to evaluate the MPC-tuning parameters.

2. Materials and methods

2.1. Effluent cascade controller in a modified BSM1

BSM1 is a useful simulation platform for designing
and testing new control strategies in wastewater treat-
ment processes [15]. This benchmark consists of five
biological reactors and one secondary settler (Fig. 1).
The first two reactors are anoxic reactors used for den-
itrification and the next three reactors are oxic reactors
used for the nitrification of ammonium to nitrate. The
reactor model is based on the activated sludge model
1 (ASM1) [18], and the settler model is based on
Takacs double-exponential settling velocity model
[19]. A strong disturbance from wastewater influent
has a significant effect on control performance. Fig. 2
displays the dry weather influent measurements for
the flow rate, readily biodegradable substrate concen-
tration, and ammonium concentration in BSM1. More
details of this simulation benchmark can be found on
the website of the COST working group (http://
www.benchmarkwwtp.org).

A cascade control structure is especially useful for
the systems like WWTPs that suffer from intense
external and internal disturbances. The cascade con-
troller implemented in BSM1 is also shown in Fig. 1.
The cascade controller contains two control loops: a
secondary inner loop and a primary outer loop. The
secondary loop consists of two PI controllers that indi-
vidually control the nitrate concentration in the second
reactor and the DO concentration in the last reactor.
The external carbon flow rate is used as the manipu-
lated variable in the nitrate PI controller. The primary
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loop has a multivariate MPC controller used to control
the effluent nitrate and effluent ammonium concentra-
tions simultaneously by adjusting two set points of
the inner PI controllers.

The performance criteria consisted of the effluent
quality index (EQI), the aeration energy (AE), the
pumping energy (PE), the average daily sludge
production for disposal (Psludge), average external
carbon addition, and some main effluent concentra-
tion variables. As the EQI value represents the levies
or fines to be paid due to the discharge of wastewater

pollutants, a good control strategy should have a
small EQI value from a strict environmental
protection point of view. In BSM1, EQI is defined as
follows [15]:

EQI ¼ 1

1000ðtf � t0Þ
Z tf

t0

bTSS � TSSðtÞ þ bCOD � CODðtÞ½

þ bBOD � BODðtÞ þ bTKN � TKNðtÞ
þ bNO3

� NO3ðtÞ�QeðtÞ dt
(1)

Fig. 1. BSM1 layout with the proposed cascade MPC–PI controller.

Fig. 2. Dry weather influent data defined in BSM1.
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where t0 and tf stand for the starting and ending time,
respectively; Qe is the effluent flow rate; COD, BOD,
TKN, and NO3 can be calculated using the mathemati-
cal expressions explained in more detail in the BSM1
official report [15]. The weighting factors used in this
work were set as βTSS = 2, βCOD = 1, βBOD = 2,
βTKN = 20, and βNO3 = 20, which are in accordance
with those proposed by Gernaey and Jorgensen [14].

The operational costs (OC) transforming several
criteria into a single monetary unit are useful for eval-
uating the plant performances of the developed con-
trol strategies, and they were calculated using Eq. (2)
[20,21]:

OC = c1ðAE þ PEÞ þ c2EC þ c3SP þ EF (2)

where EC is an external carbon addition, SP is the
sludge production, and EF means effluent fines. The
weights γ1, γ2, and γ3 were set as 0.1 €/kWh, 0.5 €/kg,
and 0.3 €/kg, respectively [8]. The calculation equa-
tions for AE, PE, EC, SP, and EF can be found in the
literature [20,21].

2.2. MPC for cascade controller design

For the last 20 years, MPC has become an effective
control method successfully applied in many areas
[22]. MPC is an intuitive control approach mainly used
for multivariate and constrained systems. It has two
major advantages compared with the multi-loop PI
control strategy. First, it is a multivariate control strat-
egy; therefore, the optimal solutions can be obtained
by online solving of an optimization problem at each
sampling instance. This feature makes it more suitable
for controlling MIMO plants where strong interactions
may exist among the process variables. In contrast, a
multi-loop PI control strategy for a MIMO process usu-
ally needs additional decoupling controllers to reduce
control loop interactions. In addition, the selection of
different manipulated and controlled variables is a
difficult task for multi-loop PI controllers.

The second benefit is that MPC can explicitly take
into account of the constraints of controlled or manip-
ulated variables, whereas a multi-loop PI control strat-
egy cannot directly deal with system constraints. MPC
is based on the receding horizon control principle. At
each sampling instance, a finite constrained horizon
optimal control problem is solved over a certain pre-
diction horizon and only the first optimal control vari-
able solution is utilized to control the process. The
comprehensive review by Qin and Badgwell [23] is
suggested for a better understanding of the evolution
of the MPC technique.

A generic MPC algorithm is given by solving the
following quadratic cost function (Eq. (3)) under the
constraints expressed by Eq. (4):

J ¼
XHp

i¼1

ðŷðk þ iÞ � rðk þ iÞÞTQðŷðk þ iÞ � rðk þ iÞÞ

þ
XHu

i¼1

ðuðk þ iÞ � u0ÞTRuðuðk þ iÞ � u0Þ

þ
XHu

i¼1

Duðk þ iÞTRDuDuðk þ iÞ (3)

ymin � y � ymax

umin � u � umax

Dumin � Du � Dumax

(4)

where k is the sampling instant, ŷ is the predicted out-
put variable, r is the set point, u is the input variable,
Δu is the input rate variable, u0 is the steady-state
input value, Hp is the prediction horizon, Hu is the
control horizon, Q is the output weighing matrix, Ru

is the input weighing matrix, and RDu is the input rate
weighing matrix.

2.3. Control performance assessment

Many factors, such as inappropriate control struc-
ture, inadequate controller tuning, and equipment
malfunction, may result in poor control performance
in industrial processes. It has been reported that
more than 50% of industrial controllers undergo
control performance problems. Hence, evaluating the
level of controller performance using a CPA has
become an important research topic during the past
two decades [24–26]. The basic roles of a CPA are to
evaluate whether the controller is doing its job satis-
factorily and to recommend the improvement poten-
tial, as shown in Fig. 3 [27]. Many CPA methods,
such as minimum variance control [28] and linear
quadratic Gaussian [29], can be found in the litera-
ture. Huang et al. [30] proposed to use a closed-loop
potential index to tune an MPC controller in a
distillation column, and recently, Liu and Yoo [12]
applied the closed-loop potential algorithm to evalu-
ate the control performance of a series of cascade
control structures in a wastewater treatment process.
The main steps of calculating prediction error and
closed-loop potential defined in Huang et al. [30] are
revisited below.

For a multivariable process, the closed-loop output
with a zero set point driven by white noise can be
expressed using a time-series model:
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Yt ¼ Gclat (5)

where Gcl is the closed-loop time-series model and at
is the white noise signal.

The above time-series model can be transferred to
a moving average (MA) form with infinite order:

Yt ¼
X1
k¼0

Fkaðt�kÞ

¼ F0at þ F1at�1 þ . . . þ Fi�1at�ði�1Þ þ Fiat�i (6)

where F0, F1, …, Fi are the impulse response matrices
of the closed-loop time-series model.

Then, we can obtain the optimal ith step
prediction:

Ytjt�i ¼ Fiat�i þ Fiþ1at�ðiþ1Þ þ . . . (7)

and the prediction error can be calculated as follows:

etjt�i ¼ Yt � Ytjt�i ¼ F0at þ F1at�1 þ . . . þ Fi�1at�ði�1Þ
(8)

The covariance of et|t–i can be calculated from the fol-
lowing equation:

covðetjt�iÞ ¼ F0RaF
T
0 þ F1RaF

T
1 þ . . . þ Fi�1RaF

T
i�1 (9)

where Σa is the covariance of the white noise signal at.

A scalar measure si can be defined as follows:

si ¼ trðcovðetjt�iÞÞ
¼ trðF0RaF

T
0 þ F1RaF

T
1 þ . . . þ Fi�1RaF

T
i�1Þ (10)

Finally, the closed-loop potential pi defined in Huang
et al. [30] is shown below:

pi ¼ s1 � si
s1

(11)

An interpretation of the closed-loop potential index pi
was given by Huang et al. [30] as follows: if a dead-
beat control action is applied from time i, then the
sum of squared error of the process output can be
reduced by 100 × pi percent. A larger closed-loop
potential pi reveals that the controller has more poten-
tial that can be improved. In other words, a faster
reduction of the closed-loop potential index pi indi-
cates a lower possibility of improving the performance
of the related controller.

2.4. Steps for evaluating MPC controller performance

The procedure for tuning a cascade MPC controller
using a CPA is shown in Fig. 4. Before setting up an
MPC controller, the parameters of the secondary PI
controllers should be determined first. These parame-
ters can be obtained from the literature. The DO PI
controller is the same as the original one in the BSM1
[15] and the nitrate PI controller is the same as the
one suggested in Liu and Yoo [12]. The detailed
parameters of these two PI controllers are listed in
Table 1. An anti-windup time constant is introduced
for further improving the control performance of the
PI controller.

Then, a process identification step was imple-
mented to get a MIMO process model for the MPC
controller design. It should be noted that, in this
study, the controlled variables for the MPC controller
are the nitrate and ammonium concentrations in the
effluent and the manipulated variables are the two set
points of the secondary PI controllers (Fig. 1). The
pseudo-random binary sequence (PRBS), which is
widely used for model identification in practice [31],
was chosen as the test signal. To identify a linear pro-
cess model for the MPC controller, the prediction error
method (PEM) [32] was employed. In the next step,

Fig. 3. A conceptual scheme of the performance assessment problem, where r is a set point, u is a manipulated variable
generated from the controller, d is a disturbance signal, and y is an output variable.
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the CPA technique was used to tune the output
weighting matrix of the MPC controller. Finally, the
plant performances of the three MPC controllers with
different output weighting parameters were compared
using the dry weather influent disturbance data.

3. Results and discussion

3.1. Process identification for MPC controller design

Since MPC is a model-based control strategy, an
accurate process model that can be used for predicting
future variations of process output variables is
needed. To this end, the identification procedure was
implemented to obtain this process model. The excita-
tion input signal for identification was a PRBS-type
test signal, which is shown in the lower plot of Fig. 5.
Its corresponding effluent nitrate concentration
response is shown in the upper plot of Fig. 5. The

measurements of the first day were discarded because
the initial data usually may not represent the real
dynamics of the process. The data from days 2 to 4
were used for estimation and the remaining data were
used for validation. Finally, a fifth-order PEM model
resulted in a satisfactory identification performance.
The identification accuracy of the model is shown in
Fig. 6, where the goodness of the fit is calculated as
follows:

Fit ¼ 100 � 1� y� ŷk k
y�meanðyÞk k

� �
(12)

where y is the measurement and ŷ is the identified
model output.

PRBS can be generated using a feedback shift reg-
ister. Two main parameters in the PRBS generator can
affect the accuracy of identification models: the PRBS
sampling time and the PRBS gain. The PRBS sampling
time controls the frequency of the generated signal. In
order to get a proper frequency with persistent excita-
tion, we set this parameter to be equal to the default
sampling time of 15 min in the BSM1. A big PRBS
gain may make the process fluctuate too heavily,
which should be avoided in real plants. In this work,
the value chosen was 0.15.

The order of the identification model was deter-
mined by selecting the order with the highest fit
value. The identification model with a lower order
could not capture the main dynamics of the process,
whereas the model with a higher order may make
the system unstable. Specifically, for the fifth-order
model, the fit values for the estimation and valida-
tion data of the effluent SNO3 were 95.4 and 92.9%,
respectively; the fit values for the estimation and
validation data of effluent SNH4 were 92.5 and 88.9%,
respectively.

3.2. CPA for MPC controllers

The identified process model was then used to
build the MPC controller to control effluent concentra-
tions in the wastewater treatment process. The

Fig. 4. Flow chart of the cascade MPC controller tuned
with CPA.

Table 1
Parameters used for the secondary PI controllers

PI parameters SNO3 PI controller DO PI controller

Proportional gain, Kp −1.4120 25
Integral time constant, Ti, d 0.0270 0.002
Anti-windup time constant, Tt, d 0.0100 0.001
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Fig. 5. Effluent nitrate concentration (top) and the corresponding PRBS test signal (bottom).

Fig. 6. Identification accuracy of the fifth-order PEM model.
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parameters of the MPC controller were tuned based
on our experience and the tuning guidelines from
Maciejowski [22]. The following MPC parameters were
used in the present work. The sampling time of the
MPC controller was 15 min, which is the same as the
process sampling time. The prediction horizon and the
control horizon were set to 10 and 3, respectively.
Both input weighting matrix and input rate weighting
matrix were set to 0. Both constraints for the manipu-
lated variables were between 0 and 5 g/m3. The con-
straint for the effluent nitrate was between 3 and
12 g/m3, and the constraint for the effluent ammo-
nium was between 0 and 8 g/m3.

Since output weights have direct effects on MPC
controller performance, the following three tuning sce-
narios with different output weights were considered
and the best tuning parameter was obtained using the
CPA approach:

QTune 1 ¼ 1 0
0 1

� �
; QTune 2 ¼ 1 0

0 10

� �
;

QTune 3 ¼ 10 0
0 1

� � (13)

In each diagonal matrix of Eq. (13), the first weight
was used for controlling the effluent nitrate concentra-
tion and the second one was used for controlling the
effluent ammonium concentration. The physical expla-
nation of the different tuning matrices in Eq. (13) is as
follows: Tune 1 gives equal emphasis to the two out-
put variables; Tune 2 gives more emphasis to the sec-
ond output variable (SNH4 in the effluent); Tune 3
concentrates more on the first output variable (SNO3 in
the effluent).

Fig. 7 shows the overall closed-loop potentials in
terms of the three tuning cases. Potentials exist for all
the three tuning cases, especially when the time lag is
small. Furthermore, the MPC controller with Tune 1
has a greater potential to be improved, which implies
that the control performance with Tune 1 is not as
good as the other two tuning cases. The CPA result
also indicates that the MPC controller with Tune 3 has
the best control performance because it has the lowest
potential to be improved.

3.3. Comparison of plant control performances

Because the set points of the MPC controller had a
significant influence on plant performance, a MOO
technique suggested by Liu et al. [17] was used in this
work. The MOO technique is useful in finding the suit-
able set points of a controller for the minimization of
both EQI and OC. The two set-points of the cascade

controller determined using MOO were 6 and 1 g N/m3

for the effluent nitrate and effluent ammonium concen-
trations, respectively. Alternatively, the multi-criteria
function based on microbiology-related failures, effluent
quality, and operating costs could be used to optimize
the controller set points in a WWTP [33].

Fig. 8 compares the nitrate and ammonium
concentrations in the effluent with respect to the three
cases with different output weights of the MPC con-
trollers. The set points are also shown in Fig. 8. It is
clear that, among the three tuning scenarios, the MPC
with Tune 3 could closely track the set point of the
effluent nitrate concentrations, whereas the MPC with
Tune 2 shows the worst tracking performance.
Besides, the concentrations of effluent nitrate con-
trolled by the MPC with Tune 3 controller are lower
than those of the other two MPC controllers in most
of the simulation time. In terms of the effluent ammo-
nium concentrations, the tracking errors of all the
three MPC controllers are high due to the intense vari-
ations of the composition in the influent. MPC with
Tune 2 and Tune 3 controllers have a similar tracking
performance and both of these two controllers outper-
form the MPC with Tune 1.

A numerical index named the integral of absolute
error (IAE) is useful for quantitatively comparing the
control performance of different control structures,
and this index can be calculated using the following
equation:

IAE ¼
Z14 d

t¼7 d

eðtÞj j dt (14)

Fig. 7. Closed-loop potentials of the cascade MPC con-
troller with three tuning parameters.
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where t is the simulation time, e(t) is the difference
between the set point and the output variable (effluent
SNO3 or effluent SNH4). The set points for the effluent
SNO3 and effluent SNH4 are 6 and 1 g N/m3, respec-
tively. The time period for calculating IAE is from the
7th day to the 14th day.

Table 2 lists the IAE values of the three MPC
controllers. Numerically speaking, a controller with a
lower IAE value has a higher control performance. In
terms of the effluent SNO3, the IAE value of the MPC
with Tune 3 is 3.99 (g N/m3) d, which is the lowest
value for the three MPC controllers with different out-
put weights. This result indicates that the MPC with
Tune 3 could achieve the best control performance for
the effluent SNO3. The IAE value of the MPC with Tune
2 is 14.03 (g N/m3) d, which is much higher than that
of the MPC with Tune 3. In terms of the effluent SNH4,
the lowest IAE value is 7.53 (g N/m3) d which corre-
sponds to the MPC with Tune 2, but this value is still
much larger than that of the MPC with Tune 3 for the
case of controlling the effluent SNO3. The IAE value of
the MPC with Tune 3 is 9.27 (g N/m3) d, which is
slightly larger than that of the MPC with Tune 2.

The plant performances with respect to the three
MPC controllers are summarized in Table 3. The total
simulation time was 14 d, but only the data from the
last seven days were used for calculating the perfor-
mance indices, and the dry weather influent data were
used to model the weather condition. Among the
three MPC controllers, the MPC controller with Tune
3 produced the lowest EQI at the cost of a small
increase of sludge production and external carbon
addition. The total nitrogen of the MPC controller
with Tune 3 was the lowest. In addition, the MPC
controller with Tune 3 led to a significant reduction in
effluent nitrate concentration because more control
effort was imposed on the nitrate variable (refer to
Eq. (13)). The OC of the MPC controller with Tune 3
and Tune 2 are similar, and both are larger than that
of the MPC controller with Tune 1. The three control
scenarios consumed same PE. The MPC with Tuning 1
control strategy, which has the lowest oxygen concen-
tration in the effluent, consumed the lowest AE. Tak-
ing everything into consideration, the MPC controller
with Tune 3 was optimal and therefore was suggested
in this work.

Fig. 8. Comparison of the effluent concentrations of SNO3 (top) and SNH4 (bottom) in terms of the three MPC tuning sce-
narios.
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4. Conclusions

In this paper, an advanced cascade MPC
control strategy has been presented and applied to
simultaneously control the concentrations of effluent
nitrate and effluent ammonium in the predenitrifying
wastewater treatment process model. A modified
BSM1 is employed as a wastewater simulation plat-
form to test the procedure of the cascade controller
design and tuning. CPA is used to evaluate the
control performances of three MPC controllers with
different output weighting matrices. Specifically, the
closed-loop potential algorithm of CPA is used to
determine the optimal controller parameters. Together
with the analysis of plant performance, the MPC
controller with Tune 3 which allocates more control
effort to the effluent nitrate is suggested to be the
best option.
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Table 2
IAE values of the three MPC controllers

IAE MPC Tuning 1 MPC Tuning 2 MPC Tuning 3

Effluent SNO3, (g N/m3) d 5.13 14.03 3.99
Effluent SNH4, (g N/m3) d 13.30 7.53 9.27

Table 3
Comparison of the plant performances using EQI, AE, PE, Psludge, and carbon addition from the last seven days under
the dry weather condition

Performance index MPC Tuning 1 MPC Tuning 2 MPC Tuning 3 Unit

EQI 5,361 5,131 4,968 kg PU/d
OC 1,739 1935 1999 €/d
AE 3,403 3,922 3,672 kWh/d
PE 531 531 531 kWh/d
Psludge 2,372 2,480 2,549 kg/d
Average added carbon 0.37 0.63 0.78 m3/d
Effluent average SO 0.53 2.23 1.34 g (-COD)/m3

Effluent average SNO3 6.20 7.82 5.91 g N/m3

Effluent average SNH4 2.80 1.82 2.13 g N/m3

Effluent average Ntot 11.12 11.77 10.18 g N/m3

Effluent average COD 50.49 50.59 50.71 g COD/m3

Note: For the meaning of all acronyms or abbreviations in this table, see Nomenclature.

Nomenclature

AE — aeration energy
ASM1 — activated sludge model no. 1
BSM1 — benchmark simulation model no. 1
BOD — biochemical oxygen demand
COD — chemical oxygen demand
CPA — control performance assessment
DO — dissolved oxygen
EQI — effluent quality index
IAE — integral of absolute error
MIMO — multi-input–multi-output
MOO — multi-objective optimization
MPC — model predictive control
N — nitrogen
NO3 — nitrate
Ntot — total nitrogen
OC — operational costs
PE — pumping energy
PEM — prediction error method
PI — proportional–integral
PRBS — pseudo-random binary sequence
Psludge — average daily sludge production for disposal
Qin — influent flow rate
SISO — single-input–single-output
SNH4 — ammonium concentration
SNO3 — nitrate concentration
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