Desalination and Water Treatment

www.deswater.com

doi: 10.1080/19443994.2016.1204365

57 (2016) 29509–29516 December

Photocatalytic degradation of bisphenol A by $HMS/g-C_3N_4$ composite

Lijun Luo^{a,*}, Wei Tang^a, Colin J. Barrow^c, Wenrong Yang^c, Hongbin Wang^{a,*}, Fengzhi Jiang^b

^aKey Laboratory of Resource Clean Conversion in Ethnic Regions, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming 650500, China, Tel. +86 13629452541; Fax: +86 871 65910016; email: 10501931@qq.com (L. Luo), Tel. +86 18669010092; email: 317266182@qq.com (W. Tang), Tel. +86 13708440749; email: 595530820@qq.com (H. Wang)

^bSchool of Chemical Science and Technology, Yunnan University, Kunming 650091, China, Tel. +86 13700661885; email: fengzhij@ynu.edu.cn

^cCentre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia, Tel. +86 087165910017; email: colin.barrow@deakin.edu.au (C.J. Barrow), Tel. +61 3 5227 2932; email: wenrong.yang@deakin.edu.au (W. Yang)

Received 8 December 2015; Accepted 14 June 2016

ABSTRACT

In this work, hexagonal mesoporous silica/g- C_3N_4 (HMS/ C_3N_4) was synthesized by heating a mixture of self-prepared HMS and dicyandiamide. The as-prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), Fourier transform infrared spectra (FT-IR) and Brunauer–Emmett–Teller analysis (BET). The prepared photocatalysts were applied to decompose bisphenol A (BPA) under UV light illumination. The mass ratios of HMS to melamine were optimized. The results showed that optimal mass ratios HMS to dicyandiamide was 1:1. Even though with the same catalyst dosage (1.0 g/L), the degradation kinetic rate constant of BPA over HMS/ C_3N_4 (0.00526 min⁻¹) was 1.76 times and 1.4 times than those on P25 (0.00298 min⁻¹) and pure C_3N_4 (0.00383 min⁻¹), while the rate constant of photolysis was only 0.00021 min⁻¹. The enhanced photocatalytic activity of the HMS/ C_3N_4 composite was ascribed to higher specific surface area and less aggregation compared to the pure C_3N_4 . It is feasible and efficient to degrade BPA by HMS/ C_3N_4 composite, which is easier to be separated than pure C_3N_4 after the pollutant has been removed completely.

Keywords: Photocatalysis; g-C₃N₄; Mesoporous silica; Bisphenol A

1. Introduction

Semiconductor-based photocatalysis is considered to be an attractive way to challenge the worldwide

*Corresponding authors.

energy shortage and environmental pollution issues. Polymeric graphitic carbon nitride $(g-C_3N_4)$ is a novel emerging metal-free semiconductor with good physicochemical stability, non-toxicity and appropriate medium band gap (2.7 eV) [1–4]. In addition, g-C₃N₄ is

Presented at the 8th International Conference on Challenges in Environmental Science & Engineering (CESE-2015) 28 September–2 October 2015, Sydney, Australia

1944-3994/1944-3986 © 2016 Balaban Desalination Publications. All rights reserved.

abundant and easily prepared via one-step polymerization from cheap chemicals like cyanamide [5], dicyandiamide [6], melamine [7], thiourea [8] and urea [9]. The C₃N₄ photocatalyst has extensively been studied in energy and environmental fields [10]. However, the prepared g-C₃N₄ usually has low specific surface area resulting in relative low photocatalytic activity. In order to solve this drawback, many researchers have prepared the porous C₃N₄ materials with a hard template method [11]. However, the method is complicated, requiring plenty of detrimental HF or NH₄HF to remove the hard template (SiO₂) [5,12]. There are also several works reporting that carbon nitrides with meso- or nano-porosity structure were synthesized by using a urea precursor [9,13]. But all in all, the pure g- C_3N_4 and porous C_3N_4 nanopowders are not easy to be separated and recycled after the photocatalytic experiment finishes. Mesoporous silicas have been commonly utilized as photocatalyst supporters to simplify the separation of the photocatalyst due to their high surface area and good sedimentation ability [14,15]. Moreover, it can enhance the photocatalytic activity of photocatalysts [16].

In this study, we propose a simple method to anchor g- C_3N_4 to self-made hexagonal mesoporous silica (HMS) to form hybrid material (denoted as HMS/ C_3N_4) by heating a mixture of self-prepared HMS and dicyandiamide without eliminating the HMS with HF. The crystal phase structure, morphology, surface area and pore structure of the prepared HMS/g- C_3N_4 were studied in detail. The photocatalytic activity of HMS/g- C_3N_4 was evaluated by degrading the bisphenol A, which is a representative emerging endocrine disruptor chemical.

2. Experiments and methods

2.1. Materials

Tetraethoxysilance (TEOS, 99%) and dodecylamine (DDA) were purchased from Alfa Aesar Inc. Bisphenol A (BPA, purity 99%) was bought from Aldrich, Inc. HCl (35–37 wt%) was bought from Chengdu Kelong Chemical Reagent Factory, China. HPLC-grade acetonitrile was obtained from Merck Co., Ltd. All the reagents were analytical grade and were used as received. Ultrapure water (18.2 M Ω) used throughout the experiments was obtained from the laboratory purification system.

2.2. Synthesis of HMS/C_3N_4 composites

Hexagonal mesoporous silica (HMS) was prepared according to the method reported by Kuwahara et al. [17]. DDA (7.05 g) and 10% HCl solution (2.5 mL) were

dissolved in deionized water (92 mL) under vigorous stirring for 1 h, and then the TEOS (29.3 g) dissolved in ethanol (53.7 mL) was slowly added to the mixture. The suspension was aged at room temperature for 24 h under stirring. The obtained precipitate was filtered, washed repeatedly with deionized water until neutral, and dried in air at 383 K overnight in vacuum. Then the as-synthesized sample was calcined at 823 K for 5 h to remove the DDA to form the hexagonal mesoporous silica (HMS). HMS/ C_3N_4 composites were synthesized by simple mixing-calcination process of self-prepared HMS and dicyandiamide based on Hao Zhang's works with minor modification [14]. The heating rate was 2.3°C/min under 10 mL/min N₂ from room temperature to 550°C and remained at 550°C for 4 h. The HMS/ C₃N₄ composites with different mass ratios of HMS to C₃N₄ were prepared by adjusting the mass ratio of HMS to dicyandiamide (5:7, 5:5, 5:4, 5:3, 5:2, and 5:1) and were denoted as HMS/7C₃N₄, HMS/5C₃N₄, HMS/ $4C_3N_4$, HMS/ $3C_3N_4$, HMS/ $2C_3N_4$, and HMS/ C_3N_4 , respectively. Pure g-C₃N₄ powders were obtained by direct calcination of dicyandiamide at 550°C for 4 h in muffle furnace.

2.3. Characterization of HMS/C_3N_4 composite

TEM samples were prepared by dispersing the powders in ethanol and depositing onto carbon-coated copper grids and morphology were observed on JEM-2100 transmission electron microscope (JEOL, Tokyo, Japan) with an acceleration voltage of 200 kV. X-ray diffraction patterns of HMS/C₃N₄ composites were obtained on a TTRIII X-ray diffractometer (Rigaku Corporation, Japan) with Cu K α radiation in the 2θ range from 20° to 80° with scanning ratio of 10°/min and a step size of 0.02°/s, the accelerating voltage and the applied current were 40 kV and 250 mA, respectively. Fourier Transform Infrared spectra (FTIR) were conducted on a Nicolet iS10 FT-IR Spectrometer (Thermo Scientific, Germany) using KBr pellet technique over the wave number range of $4,000-400 \text{ cm}^{-1}$ with a resolution of 2 cm⁻¹. Nitrogen (N₂) adsorption– desorption measurement at 77 K was conducted using TriStar II 3020 (Micromeritics Inc., USA). The surface area of samples was obtained using the Brunauer-Emmett-Teller (BET) plot of N₂ adsorption isotherm. The average pore volumes were calculated by using Barrett-Joyner-Halenda (BJH) method with the adsorption branch of the N₂ isotherm.

2.4. Photocatalytic degradation experiments

Batch experiments were carried out in XPA-7 photochemical Reactor (Xujiang electro-mechanical plant, Nangjing, China) to investigate photocatalytic performance for BPA. The ultraviolent light was provided by a 20 W UV lamp (λ = 254 nm). The reaction system was cooled by circulating water and maintained at room temperature. Typically, 0.0500 g of the prepared HMS/C₃N₄ was added into 50.00 mL of BPA aqueous solution (5 mg/L). Before illumination, the suspensions were stirred in dark for 30 min to reach the adsorption/desorption equilibrium on the photocatalyst surface, and the concentration of the BPA was detected as the initial concentration C_0 . Then light illumination started and quartz tube containing 50.00 mL of BPA was taken out at scheduled time intervals and its concentration was determined as C_t . The suspension was immediately filtered through a 0.45 µm glass fiber filter to remove the catalyst particles and subjected to subsequent HPLC analysis. HPLC analysis conditions were selected according to our previous report [18].

In order to investigate the BPA degradation process over the prepared HMS/C_3N_4 hybrid materials, the experimental data were fitted by pseudo-first-order model. Its equation can be written in a linear form shown in Eq. (1):

$$\ln \frac{C_t}{C_0} = -\kappa t \tag{1}$$

where C_0 is the initial concentration, C_t is the concentration of BPA after time (*t*), the slope of the fitted line of $\ln(C_t/C_0)$ vs. reaction time was the rate constant (κ).

3. Results and discussions

3.1. Characterization of HMS/C₃N₄ composites

3.1.1. Morphology

To observe the morphology of the as-synthesized composites and identify material composition of hybrid materials, the morphologies of $g-C_3N_4$, HMS and HMS/ C_3N_4 materials were observed with TEM and shown in Fig. 1. Pure $g-C_3N_4$ displays a large particles shape with layered structure with numerous stacking layers, and its edge area consists of several sheets, which exhibit a relatively dark brightness (Fig. 1(a)), which was similar to the result reported by Xu et al. [19]. The prepared HMS particles are 50 nm (Fig. 1(b)). When the mixture of HMS and

Fig. 1. TEM images of pure- C_3N_4 (a), HMS (b) and HMS/ C_3N_4 (c).

Fig. 2. XRD patterns of HMS, HMS/C_3N_4 , and $pure-C_3N_4$ (a) low-angle XRD patterns of HMS and HMS/C_3N_4 (b).

dicyandiamide was heated to form HMS/C_3N_4 , the HMS particles were partly covered by the C_3N_4 from the TEM of HMS/C_3N_4 (Fig. 1(c)).

3.1.2. Crystal phase structure

In order to investigate the crystal phase composition of prepared materials, the XRD patterns of asmade pure C_3N_4 , HMS and HMS/ C_3N_4 were recorded and shown in Fig. 2(a). HMS had a weak and wide peak at approximately 23° because of its amorphous structure. The XRD pattern of g- C_3N_4 showed a clear peak at 27.4° corresponding to the (0 0 2) interlayer of g- C_3N_4 [20], and there was another small peak at 13° agreed well with the (1 0 0) crystal plane [21]. The XRD pattern of HMS/ C_3N_4 showed that there were two peaks at 23° and 27.4°, corresponding to the (0 0 2) interlayer of g-C₃N₄ and HMS. In order to investigate the pore structure, small-angle X-ray diffraction patterns of HMS and HMS/C₃N₄ were presented in Fig. 2(b). From Fig. 2(b), we can see that both HMS and HMS/C₃N₄ samples contain a single low-angle diffraction peak at about $2\theta = 2^{\circ}$ ascribed to the (1 0 0) crystallographic plane of the hexagonal pore structure [22]. And this result represents a characteristic of the mesoporous structure. However, the intensity of the peak of HMS/C₃N₄ decreases sharply compared to that of HMS, suggesting that the mesoporous structures of HMS/C₃N₄ become less uniform because of the introduction of the C₃N₄ into HMS.

3.1.3. Fourier transform infrared spectra analysis

Fig. 3 displays the FT-IR spectra of HMS, C_3N_4 , HMS/ C_3N_4 and HMS/ $7C_3N_4$ materials. It shows that the broad absorption peak of the HMS near 3,440 cm⁻¹ is assigned to the stretching vibration of O–H hydroxyl groups. Si–O–Si vibrational mode appears near 870 cm⁻¹ and 1,075 cm⁻¹. Absorption bands ranging from 1,240 to 1,639 cm⁻¹ are present in C_3N_4 , HMS/ C_3N_4 and HMS/ $7C_3N_4$. The peaks at 1,639 and 1,240 cm⁻¹ were attributable to C=N and C–N stretching vibration modes, revealing that existence of C_3N_4 in HMS/ C_3N_4 materials [23]. The absorption peak at 810 cm⁻¹ belongs to the characteristic breathing mode of s-triazine [24]. Based on that, we can deduce that as-synthesized hybrids consist of two components HMS and C_3N_4 .

Fig. 3. FT-IR spectra of HMS, $C_3N4,\ HMS/C_3N_4$ and $HMS/7C_3N_4.$

Fig. 4. (a) N_2 adsorption–desorption isotherms and (b) BJH pore size distribution of HMS, HMS/ C_3N_4 and pure- C_3N_4 . Open and solid symbols represent desorption and adsorption branches, respectively.

3.1.4. BET analysis

To determine the surface area and pore structure of HMS, HMS/C₃N₄ and C₃N₄ and clarify the effect of pore structure on the photocatalytic performance, the N₂ adsorption–desorption isotherm and pore size distribution in the mesopore range corresponding to HMS, HMS/C₃N₄, and C₃N₄ materials are depicted in Fig. 4. The isotherms of HMS, HMS/C₃N₄, and C₃N₄ materials are identified as classical type IV by IUPAC, which is characteristic of mesporous structure (2–50 nm, Fig. 4(a)). The pore distributions of the

Fig. 5. Photocatalytic decomposition time courses of BPA (initial concentration 5 mg/L) on HMS/7C₃N4, HMS/ 5C₃N4, HMS/4C₃N₄, HMS/3C₃N4, HMS/2C₃N₄, and HMS/C₃N₄ composites (catalyst dosage 1.0 g/L) (a) and the corresponding first-order plots (b).

HMS, HMS/C₃N₄, and C₃N₄ are given in Fig. 4(b). The range of pore sizes is 2.5–3.5 nm, the maximum pore sizes are about 2.84, 2.7, and 2.5 nm, respectively. The Brunauer–Emmett–Teller (BET) surface area and total pore volume of HMS, HMS/C₃N₄, and C₃N₄ were listed in Table 1. The HMS and HMS/C₃N₄ materials had higher BET surface areas of 710.5 and 202.9 m²/g, respectively, which were much higher than that of C₃N₄ (7.1 m²/g).

3.2. Photocatalytic performance

To investigate the effect of amount of HMS in HMS/C_3N_4 hybrid materials on the photocatalytic degradation of BPA and optimize mass ratio of HMS

Materials	BET surface area (m ² /g)	Total pore volume (cm ³ /g)
HMS	710.5	1.4637
HMS/C ₃ N ₄	202.9	0.5943
Pure g-C ₃ N ₄	7.1	0.0368

Table 1 BET surface area and pore parameters of HMS, HMS/ C_3N_4 and pure- C_3N_4

Fig. 6. Direct photolysis (20 W UV light, main wavelength 254 nm) and photocatalytic decomposition time courses of BPA (initial concentration 5 mg/L) on pure-C₃N₄ and HMS/5C₃N₄ composites (a) and the corresponding first-order plots (b).

to dicyandiamide in the preparation process, the photocatalytic degradation of BPA over a series of HMS/ C_3N_4 was examined. The experimental condition was 1.0 g/L photocatalyst, 5 mg/L BPA solution and the pH value of BPA solution was 7.0. The photocatalytic decomposition time course of BPA over HMS/C₃N₄, HMS/2C₃N₄, HMS/3C₃N₄, HMS/4C₃N₄, HMS/5C₃N₄,

and $HMS/7C_3N_4$ materials and the corresponding first-order plots were shown in Fig. 5. We can see from Fig. 5(a) that the adsorption removal ratios of BPA on the HMS/C₃N₄, HMS/2C₃N₄, HMS/3C₃N₄, HMS/4C₃N₄, HMS/5C₃N₄, and HMS/7C₃N₄ were lower than 3.0% because C3N4 and HMS have no adsorption ability for hydrophobic BPA in water. After light illumination, photocatalytic degradation removal ratios of BPA on HMS/C₃N₄, HMS/2C₃N₄, HMS/3C₃N₄, HMS/4C₃N₄, HMS/5C₃N₄, and HMS/ 7C₃N₄ were 18.60, 37.60, 46.80, 34.20, 61.0, and 40.70%, respectively. The pseudo-first-order degradation kinetic constants for BPA over the HMS/C₃N₄, HMS/ 2C₃N₄, HMS/3C₃N₄, HMS/4C₃N₄, HMS/5C₃N₄, and HMS/7C₃N₄ were 0.00120 min, 0.00251, 0.00335, 0.00218, 0.00526, and 0.00278 min⁻¹, respectively (Fig. 5(b)). The rate constant increased from 0.00120 to 0.00526 min^{-1} with the increasing of dicyandiamide to HMS from 1:5 to 5:5. Further increasing the mass ratio of dicyandiamide to HMS from 5:5 to 7:5 in preparation process, the degradation rate constants decreased from 0.00526 to 0.00278 min⁻¹. The main reason maybe that increasing dicyandiamide may produce gradually more C_3N_4 , the elevating C_3N_4 with photocatalytic activity can decompose BPA rapidly. However, excess dicvandiamide amount maybe produce excess C_3N_4 in HMS/C₃N₄ materials, which resulted in agglomeration phenomenon of C_3N_4 . Hence the optimal mass ratio of dicyandiamide to HMS was 5:5 in the preparation process of the HMS/C₃N₄ materials.

In order to confirm the role of HMS in HMS/C₃N₄, the photocatalytic degradation of BPA over HMS/ $5C_3N_4$, pure C₃N₄ and P25 (commercial standard photocatalyst) and photolysis of BPA were carried out. The degradation conditions were 5 mg/L BPA initial concentration, 1.0 g/L photocatalysts and the solution pH 7.0. Fig. 6 illustrated that photocatalytic decomposition time courses of BPA over these materials and the corresponding first-order plots. Even with the same catalyst dosage (1.0 g/L), the pseudo-first-order degradation kinetic constants of BPA over HMS/ $5C_3N_4$, P25, and pure C₃N₄ were 0.00526, 0.00298, and 0.00383 min⁻¹, respectively. While the rate constant of photolysis was only 0.00021 min⁻¹. The degradation rate constant of BPA over HMS/5C₃N₄ was 1.76 times and 1.4 times than those on P25 and pure C₃N₄, respectively. The experiment results indicated that the HMS in HMS/C₃N₄ hydrid materials can improve the photocatalytic activity of C₃N₄, the main reason maybe that C₃N₄ in HMS/C₃N₄ had higher surface area compared to pure C₃N₄ resulting in higher photocatalytic performace. In addition, as we know, it is difficult to separate and recycle the pure C₃N₄ particles after the pollutant has been removed completely. However, as for the prepared HMS/C₃N₄, the mesoporous silica in the HMS/C₃N₄ has good sedimentation ability, so it can be separated by filtration or centrifugation.

4. Conclusions

In summary, graphitic carbon nitride $(g-C_3N_4)$ as a rising photocatalyst was first immobilized on HMS by simply heating a mixture of self-prepared HMS and dicyandiamide. The crystal phase structure, morphology, surface area, and pore structure of the prepared HMS/g-C₃N₄ was studied. The optimal mass ratio of dicyandiamide to HMS was 5:5 in the preparation process of the HMS/C₃N₄ materials. The prepared HMS/g-C₃N₄ materials were applied to remove the BPA, which is a representative endocrine chemical. The results indicated that the introduction of HMS with high surface area and good sedimentation ability to C₃N₄ can improve the photocatalytic activity and separation ability of C₃N₄. It is an efficient way to deposit the catalyst on the HMS supporter for the removal of pollutants in real water treatment.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21261026), Natural Science Foundation of Yunnan Province (2016FB014), Key Program of Yunnan Province Foundation (2013FA005).

References

- X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131 (2009) 1680–1681.
- [2] T.T. Li, L.L. Zhao, Y.M. He, J. Cai, M.F. Luo, J.J. Lin, Synthesis of g-C₃N₄/SmVO₄ composite photocatalyst with improved visible light photocatalytic activities in RhB degradation, Appl. Catal. B: Environ. 129 (2013) 255–263.

- [3] Y.M. He, J. Cai, T.T. Li, Y. Wu, Y.M. Yi, M.F. Luo, L.H. Zhao, Synthesis, characterization, and activity evaluation of DyVO₄/g-C₃N₄ composites under visible-light irradiation, Ind. Eng. Chem. Res. 51 (2012) 14729–14737.
- [4] Y.M. He, Y. Wang, L.H. Zhang, B.T. Teng, M.H. Fan, High-efficiency conversion of CO₂ to fuel over ZnO/g-C₃N₄ photocatalyst, Appl. Catal. B: Environ. 168 (2015) 1–8.
- [5] S. Hwang, S. Lee, J.S. Yu, Template-directed synthesis of highly ordered nanoporous graphitic carbon nitride through polymerization of cyanamide, Appl. Surf. Sci. 253 (2007) 5656–5659.
- [6] S. Fang, K. Lv, Q. Li, H. Ye, D. Du, M. Li, Effect of acid on the photocatalytic degradation of rhodamine B over g-C₃N₄, Appl. Surf. Sci. (2015), doi: 10.1016/j.apsusc.2015.07.179.
- [7] Z. Jin, Q. Zhang, S. Yuan, T. Ohno, Synthesis high specific surface area nanotube $g-C_3N_4$ with two-step condensation treatment of melamine to enhance photocatalysis properties, RSC Adv. 5 (2015) 4026–4029.
- [8] F. Dong, M. Ou, Y.K. Jiang, S. Guo, Z.B. Wu, Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification, Ind. Eng. Chem. Res. 53 (2014) 2318–2330.
- [9] Y. Zhang, J. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale 4 (2012) 5300–5303.
- [10] S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride, Adv. Mater. (2015), doi: 10.1002/adma.201500033.
- [11] Z.H. Tang, X. He, Y. Song, L. Liu, Q.G. Guo, J.H. Yang, Properties of mesoporous carbons prepared from different carbon precursors using nanosize silica as a template, New Carbon Mater. 25 (2010) 465–469.
- [12] Y. Li, Y. Sun, F. Dong, W.K. Ho, Enhancing the photocatalytic activity of bulk $g-C_3N_4$ by introducing mesoporous structure and hybridizing with graphene, J. Colloid Interface Sci. 436 (2014) 29–36.
- [13] M. Zhang, J. Xu, R. Zong, Y. Zhu, Enhancement of visible light photocatalytic activities via porous structure of g-C₃N₄, Appl. Catal. B: Environ. 147 (2014) 229–235.
- [14] X. Wang, S. Wang, W. Hu, J. Cai, L. Zhang, L. Dong, L. Zhao, Y. He, Synthesis and photocatalytic activity of SiO₂/g-C₃N₄ composite photocatalyst, Mater. Lett. 115 (2014) 53–56.
- [15] Y. Chen, K. Wang, L. Lou, Photodegradation of dye pollutants on silica gel supported TiO₂ particles under visible light irradiation, J. Photochem. Photobiol., A 163 (2004) 281–287.
- [16] Y. Li, S.J. Kim, Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability, J. Phys. Chem. B 109 (2005) 12309–12315.

29516

- [17] Y. Kuwahara, K. Maki, Y. Matsumura, T. Kamegawa, K. Mori, H. Yamashita, Hydrophobic modification of a mesoporous silica surface using a fluorine-containing silylation agent and its application as an advantageous host material for the TiO₂ photocatalyst, J. Phys. Chem. C 113 (2009) 1552–1559.
- [18] L.J. Luo, Y. Yang, M. Xiao, L.C. Bian, B. Yuan, Y.J. Liu, F.Z. Jiang, X.J. Pan, A novel biotemplated synthesis of TiO₂/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation, Chem. Eng. J. 262 (2015) 1275–1283.
- [19] J. Xu, Y. Wang, Y.F. Zhu, Nanoporous graphitic carbon nitride with enhanced photocatalytic performance, Langmuir 29 (2013) 10566–10572.
 [20] Q. Gu, Y. Liao, L. Yin, J. Long, X. Wang, C. Xue,
- [20] Q. Gu, Y. Liao, L. Yin, J. Long, X. Wang, C. Xue, Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability, Appl. Catal. B: Environ. 165 (2015) 503–510.

- [21] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, L. Wu, Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Appl. Catal. B: Environ. 163 (2015) 135–142.
- [22] A. Trouvé, I. Batonneau-Gener, S. Valange, M. Bonne, S. Mignard, Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution, J. Hazard. Mater. 201–202 (2012) 107–114.
- [23] J.X. Xia, J. Di, S. Yin, H.M. Li, H. Xu, L. Xu, H.M. Shu, M.Q. He, Solvothermal synthesis and enhanced visible-light photocatalytic decontamination of bisphenol A (BPA) by g-C₃N₄/BiOBr heterojunctions, Mater. Sci. Semicond. Process. 24 (2014) 96–103.
- [24] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C₃N₄ fabricated by directly heating melamine, Langmuir 25 (2009) 10397–10401.