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ABSTRACT

The aim of this study was to determine optimum kinetic and isotherm models for phos-
phate (P) sorption onto iron oxide nanoparticles through nonlinear regression analysis.
Equilibrium batch experiments were conducted at the experimental conditions of initial P
concentration =0.5-20 mg/L, adsorbent doses=0.1, 0.2, 0.3, 0.4, 0.5, and 0.6g/L, and
shaking time = 24 h. Kinetic batch experiments were also performed at the experimental con-
ditions of initial P concentrations=1, 2, 4, 6, 8, and 10 mg/L, adsorbent dose=0.6 g/L, and
shaking time =10 min-24 h. Six isotherm models (Langmuir, Freundlich, Temkin, Redlich-
Peterson, Khan, and Sips) were used to analyze the equilibrium data through nonlinear
regression analysis. Three kinetic models (pseudo-first-order, pseudo-second-order, and Elo-
vich) were used to analyze the kinetic data through nonlinear regression. Error functions
including the sum of the squared errors, hybrid fractional error function (HYBRID), average
relative error, Marquardt’s percent standard deviation, and sum of the absolute errors
(EABS) were used to minimize the error distribution between experimental data and
predicted model fits in the optimization process. To compare the five error values, the
results of each set were normalized and summed. Considering both coefficient of determi-
nation (R?) and Chi-square (Xz), the Redlich-Peterson (Freundlich) model was found to pro-
vide the best fit to the experimental data in the equilibrium model analyses, and the
optimum parameter values were obtained by the HYBRID error function with the parameter
values of Kgr/ag=3.59-4.15mg/g and g=0.69-0.89 from the Redlich-Peterson model.
Considering both R? and Xz/ the Elovich (or pseudo-second-order) model was found to pro-
vide the best fit to the kinetic data in the kinetic model analyses, and the optimum
parameter values produced by the EABS error function with the parameter values of
=(3.60 x 10°)—(4.80 x 10°) mg/g/h and f=4.43-13.07 g/mg from the Elovich model.
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1. Introduction

Adsorption is widely used for the treatment of
water and wastewater because of its relatively low
cost and simplicity of design and operation [1].
Adsorption characteristics of a contaminant onto an
adsorbent are examined via batch sorption tests under
various experimental conditions [2]. Equilibrium and
kinetic batch tests are used to determine the effective-
ness of a specific adsorbent for removing a target
adsorbate [3,4]. Equilibrium and/or kinetic sorption
models have been used for the analyses of batch sorp-
tion data. Zhang et al. [5] investigated the adsorption
characteristics of phosphorus onto laterite (red soil)
using isotherm models. They performed linear and
nonlinear regression analyses to determine the proper
adsorption parameters from equilibrium sorption data.
Karadag et al. [6] performed a comparative study of
linear and nonlinear regressions for ammonium
exchange by clinoptilolite using kinetic and isotherm
models. Ho et al. [7-12] conducted linear and nonlin-
ear regressions for adsorption of contaminants (e.g.
heavy metals and dyes) to adsorbents using kinetic
sorption and isotherm models. Kumar et al. [13-18]
also performed linear and nonlinear regressions for
the adsorption isotherms of basic dyes (e.g. methylene,
malachite green, safranin, and basic red 9) on acti-
vated carbon. It was reported in the literature [7,19]

that nonlinear regression would be more appropriate
for determination of isotherm parameters than linear
regression because nonlinear methods avoid problems
(alteration of error distribution) that occur during
transformation of nonlinear model expression to a lin-
ear one. Also, the optimum isotherm parameters for
modeling contaminant sorption onto adsorbents vary
depending on the error functions used in the optimi-
zation process [7].

Phosphate is an essential macronutrient in aquatic
environments, but in excessive amounts, it causes
eutrophication of water bodies [20]. Recently, iron
oxide particles have been used by several researchers
for phosphate removal from aqueous solutions [21,22].
de Vicente et al. [23] tested nanosized magnetite
(Fe304) and micron-sized iron (Fe) particles as phos-
phate adsorbents for lake restoration. They used the
Langmuir isotherm model to compare the phosphate
adsorption capacity between Fe;O, and Fe particles.
Zeng et al. [24] examined adsorptive removal of phos-
phate using industrial waste iron oxide tailings. They
used isotherm and kinetic models to analyze the
experimental data.

In this study, optimum kinetic and isotherm mod-
els for phosphate sorption onto iron oxide nanoparti-
cles were determined through nonlinear regression
analysis by extending the research works of Yoon

Table 1

Nonlinear forms of isotherm and kinetic models used in nonlinear regression analyses

Model Mathematical expression Reference

Two-parameter isotherm

Langmuir ge = ?ngg: (D [26]

Freundlich ge = K¢ CY/" 2 [27]

Temkin qe = 5L InALC, 3) [28]

Three-parameter isotherm

Redlich-Peterson e =7 f;RCeC: “) [29]

Khan fe = Tt (5) [30]
. _ llmﬂng5

Sips Ge = ruch (6) [31]

Kinetic

Pseudo-first-order g = qe (1 —e7ht) (7) [32]

Pseudo-second-order g = ]f,ff;et ®) [33]

Elovich

g =4in(ap) +1int © (341
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Table 2
Error functions used in nonlinear regression analyses
Error function Mathematical expression Reference
Sum of the squared errors (SSE) zn:(qe,calc - qe,meas)z‘z [36]
Hybrid fractional error (HYBRID) %:1 F"”“;;#”S)ZL [36]
Average relative error (ARE) 100 W : [37]
Marquardt’s percent standard deviation (MPSD) 100, /55571 (%)f [38]
Sum of the absolute errors (EABS) i}qe,cak - qema5|i [36]

iz
et al. [25], who performed the kinetic, equilibrium, nm using a UV-vis spectrophotometer (Helios,

and thermodynamic experiments to characterize the
phosphate sorption onto iron oxide nanoparticles.
Equilibrium batch experiments were conducted as a
function of phosphate concentration. Six isotherm
models (Table 1) were used to analyze the equilibrium
data. Kinetic batch experiments were also performed
as a function of shaking time. Three kinetic models
(Table 1) were used to analyze the kinetic data
through nonlinear regression. Various error functions
(Table 2) were used to minimize the error distribution
between experimental data and predicted model fits
in the optimization process [35].

2. Materials and methods
2.1. Batch experiments

Phosphate removal by iron oxide nanoparticles
was conducted under batch conditions. Iron oxide
nanoparticles used in the experiments were synthe-
sized by the co-precipitation method described in [25].
The characteristics of iron oxide nanoparticles were
described elsewhere [25]. Briefly, synthesized iron oxi-
des were nanosized particles composed of maghemite
(y-Fe;O3) and goethite (a-FeOOH) with a BET specific
area of 822m”/g. For the batch experiments, the
desired phosphate (P) solution was prepared by dilut-
ing the stock solution (1,000 mg/L), which was made
from potassium dichromate (KH,PO4. All batch
experiments were performed in triplicate using 50 mL
polypropylene conical tubes. First, equilibrium batch
experiments were conducted in a 30 mL solution (ini-
tial P concentration = 0.5-20 mg/L; adsorbent doses=
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 g/L). The tubes were sha-
ken at 30°C and 100rpm using a shaking incubator
(Daihan Science, Korea). The samples were collected
after 24h of shaking time and filtered through a
0.45-um membrane filter. The phosphate was analyzed
by the ascorbic acid method [39]. Phosphate
concentrations were measured at a wavelength of 880

Thermo Scientific, Waltham, MA, USA). Second,
kinetic batch experiments were performed in a 30 mL
solution (initial P concentration=1, 2, 4, 6, 8, and 10
mg/L; adsorbent dose =0.6g/L). The tubes were sha-
ken at 30°C and 100 rpm using a shaking incubator,
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Fig. 1. Phosphate sorption experimental data: (a) equilib-
rium; (b) kinetic.
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and the samples were collected after various shaking
times from 10 min to 24 h.

2.2. Nonlinear regression with error functions

To determine the optimum isotherm and kinetic
model parameters for the experimental data, various
error functions were used in the error analysis
(Table 2). Five different error functions were examined
to determine parameters for each model by minimiz-
ing the respective errors using the solver add-in with
Microsoft’s spread sheet, Excel (Microsoft corporation,
1994). To compare the five error values, the results of
each set were normalized and summed (SNE). SNE
used to find the best error function for analyzing mod-
els and obtaining parameters. Coefficient of determi-
nation (R?) and Chi-square (*) analyses were used to
evaluate the best fit of kinetic or equilibrium models
with experimental data. The best fit model was
selected by the highest R* and lowest y*.
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3. Results and discussion
3.1. Nonlinear regression with isotherm models

The equilibrium batch data for phosphate sorption
onto iron oxide nanoparticles under various adsor-
bent doses (initial P concentration=0.5-20mg/L;
adsorbent doses=0.1, 0.2, 0.3, 0.4, 0.5, and 0.6g/L;
shaking time=24h) are presented in Fig. 1(a). At an
adsorbent dose of 0.1g/L, the sorption capacities
were in the range of 2.57-10.22mg/g. The sorption
capacities at an adsorbent dose of 0.2g/L varied
from 1.90 to 9.39mg/g, whereas the sorption capaci-
ties at 0.3g/L were in the range of 2.88-8.45mg/g.
At an adsorbent dose of 0.4g/L, the sorption capaci-
ties were in the range of 1.10-7.93mg/g. The sorp-
tion capacities at an adsorbent dose of 0.5g/L varied
from 2.97 to 6.40mg/g, whereas the sorption capaci-
ties at 0.6 g/L were in the range of 3.23-6.10mg/g.
The equilibrium data (Fig. 1(a)) were analyzed by
two-parameter isotherms with five error functions.

Table 3
Error function values and model parameters of two-parameter isotherms (adsorbent dose =0.6 g/L)

SSE HYBRID ARE MPSD EABS
Langmuir
Qm(mg/g) 5.03 492 4.69 4.69 469
K (L/mg) 25.75 28.14 34.33 34.33 34.33
SSE 2.60 2.66 3.13 3.13 3.13
HYBRID 13.22 12.93 14.15 14.15 14.15
ARE 11.48 10.75 9.29 9.29 9.29
MPSD 34.44 32.26 27.86 27.86 27.86
EABS 3.32 3.19 2.93 2.93 2.93
SNE 4.76 4.60 4.50 4.50 4.50
Freundlich
Kr(L/g) 4.00 4.04 4.06 4.06 3.63
1/n 0.12 0.11 0.08 0.08 0.17
SSE 0.71 0.74 1.30 1.30 1.18
HYBRID 3.88 3.74 5.65 5.64 8.36
ARE 7.14 6.91 5.94 5.95 7.64
MPSD 21.43 20.72 17.83 17.83 22.92
EABS 1.92 1.93 1.91 1.91 1.78
SNE 3.87 3.83 4.22 4.22 4.83
Temkin
Ar(L/g) 9,751.00 19,429.11 294,084.9 294,269.2 294,300
br(J/mol) 5.54 5.95 7.69 7.69 7.69
SSE 1.02 1.05 1.59 1.59 1.59
HYBRID 5.34 5.18 6.93 6.93 6.93
ARE 8.37 792 6.54 6.54 6.54
MPSD 25.10 23.75 19.62 19.62 19.62
EABS 2.31 2.26 2.10 2.10 2.10
SNE 441 4.28 447 4.47 4.47

Note: Numbers in bold type represent the minimum values of relevant error function and SNE.
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The estimated error function values and model
parameters for an adsorbent dose of 0.6 g/L are pro-
vided in Table 3. In the Langmuir isotherm, the low-
est SNE values were obtained from the error
functions of average relative error (ARE) (4.50),
Marquardt’s percent standard deviation (MPSD)
(4.50), and sum of the absolute errors (EABS) (4.50).
In the Freundlich and Temkin isotherms, the lowest
SNE values were obtained from the HYBRID (Fre-
undlich =3.83; Temkin =4.28). The equilibrium data
(Fig. 1(a)) were also analyzed by three-parameter iso-
therms with five error functions. The estimated error
function values and model parameters (adsorbent
dose=0.6g/L) are provided in Table 4. In the Red-
lich—-Peterson, Khan, and Sips isotherms, the lowest
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SNE values were obtained from the HYBRID (Red-
lich-Peterson = 3.84; Khan =3.84; Sips =4.16).

The Freundlich isotherm fitted with five error
functions for the equilibrium data (adsorbent dose =
0.6g/L) are shown as an example in Fig. 2(a). The
comparison of six isotherm models indicated that the
Freundlich model had the lowest SNE value (3.83).
The six isotherm models fitted with the HYBRID error
function for the equilibrium data (adsorbent dose =
0.6 g/L) are also presented as an example in Fig. 2(b).
The results also demonstrated that the HYBRID pro-
vided the best estimation of all isotherm models
except the Langmuir model. Therefore, the HYBRID
was selected to analyze the equilibrium data. In the
literature, the HYBRID error function has been

Table 4
Error function values and model parameters of three-parameter isotherms (adsorbent dose =0.6 g/L)

SSE HYBRID ARE MPSD EABS
Redlich—Peterson
Kr(L/g) 167,468.10 245,480.98 980,001 980,000 987,140.79
ar (L/mg) 41,881.90 60,805.56 240,806.96 240,806.97 272,244.43
Kr/ag (mg/g) 4.00 4.04 4.07 4.07 3.63
g 0.879 0.889 0.916 0.916 0.830
SSE 0.71 0.74 1.26 1.26 1.18
HYBRID 5.18 4.98 7.36 7.36 11.16
ARE 7.15 6.91 5.97 5.97 7.64
MPSD 24.76 23.94 20.69 20.69 26.47
EABS 1.92 1.93 1.92 1.92 1.78
SNE 3.89 3.84 4.22 4.22 4.86
Khan
7. (mg/g) 141 1.72 211 2.11 091
bx 5,736.82 2,272.62 2,803.00 2,803.00 3,530.00
ag 0.880 0.890 0.917 0.917 0.831
SSE 0.72 0.75 1.32 1.32 1.19
HYBRID 521 5.10 7.65 7.64 11.30
ARE 717 6.98 5.99 5.99 7.68
MPSD 24.84 24.17 20.75 20.75 26.61
EABS 1.93 1.95 1.93 1.93 1.79
SNE 3.86 3.84 4.23 4.23 4.82
Sips
dm (Mmg/g) 28.31 34.70 30.01 30.03 30.00
ag 0.17 0.13 0.16 0.16 0.16
By 0.14 0.12 0.10 0.10 0.10
SSE 0.77 0.79 1.35 1.35 1.35
HYBRID 5.49 5.27 7.83 7.83 7.83
ARE 7.38 7.05 6.05 6.05 6.05
MPSD 25.58 24.43 20.97 20.97 20.97
EABS 2.00 1.98 1.95 1.95 1.95
SNE 427 4.16 4.61 4.61 4.61

Note: Numbers in bold type represent the minimum values of relevant error function and SNE.
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selected by researchers to determine the optimized
isotherm model parameter values. Allen et al. [40]
reported that the sorption isotherms for two basic
dyes (Basic Yellow 21 and Basic Red 22) onto an
adsorbent (kudzu) are generally better represented by
the HYBRID. Gunay [41] also used the HYBRID to
obtain isotherm parameters for ammonium exchange
by natural clinoptilolite because the HYBRID was
shown to provide the lowest SNE values.

Nonlinear regression analyses of six isotherms for
the equilibrium data are summarized in Table 5. The
HYBRID error function, R?, and j* along with opti-
mized parameter values for the six isotherm models
are shown in Table 5. At an adsorbent dose of 0.1g/L,
the Redlich-Peterson, Freundlich, Khan, and Sips
models had the same highest R* (0.985) and the same
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Fig. 2. Nonlinear regression analyses for equilibrium data
(adsorbent dose=0.6g/L): (a) comparison of Freundlich
isotherm model fits among five error functions; (b) com-
parison of model fits from HYBRID error function among
six isotherms. Error function values and model parameters
are provided in Tables 3 and 4.
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lowest XZ (0.129). Considering both R? and ){2, the
fitting degree of isotherm models were classified as
Freundlich = Redlich-Peterson = Khan = Sips > Temkin >
Langmuir. At an adsorbent dose of 0.2g/L, the Red-
lich-Peterson, Freundlich, Khan, and Sips models had
the same highest R*> (0.967), whereas the models
showed slightly different »* values. The Redlich—
Peterson (Freundlich) model had the best model fit
followed by Khan =Sips > Temkin > Langmuir. At an
adsorbent dose of 0.3 g/L, the Redlich-Peterson, Fre-
undlich, Khan, and Sips models had the same highest
R? (0.943), whereas the models showed slightly differ-
ent »* values. The Redlich-Peterson (Freundlich)
model had the best model fit followed by Sips > Khan
> Temkin > Langmuir. At an adsorbent dose of 0.4 g/
L, the Redlich-Peterson and Freundlich had the same
highest R* (0.989) and the same lowest »* (0.093). The
Redlich-Peterson (Freundlich) model had the best
model fit followed by Khan > Sips>Temkin > Lang-
muir. At 0.5g/L, the Redlich-Peterson (Freundlich)
model had the highest R* (0.899) and lowest y* (0.234).
Thus, the fitting degree of isotherm models were clas-
sified as Redlich-Peterson (Freundlich) > Sips > Khan >
Temkin > Langmuir. The same trend could be found
at 0.6 g/L, showing that the Freundlich and Redlich—
Peterson models had the same R? (0.855) and »*
(0.149) values. Considering both )(2 and R? the Red-
lich-Peterson (Freundlich) model was selected as the
best-fitting model for the equilibrium data. Note that
the Freundlich isotherm is one of special case of the
Redlich—-Peterson isotherm [10]. The Redlich-Peterson
isotherm fitted with the HYBRID error function for
the equilibrium data is shown in Fig. 3. The optimum
parameter values of Kr/agr=3.59-4.15mg/g and g=
0.69-0.89 were determined from the Redlich-Peterson
model (Table 5).

In our study, the Redlich-Peterson (Freundlich)
isotherm was the best model for the equilibrium data.
Ayoob and Gupta [42] performed isotherm studies to
examine the adsorptive removal of fluoride by alu-
mina cement granules. Three isotherms (Freundlich,
Langmuir, and Dubinin-Radushkevich) were used to
analyze the equilibrium data using five error func-
tions. From the ;{2 analysis with minimum SNE values,
the Freundlich was determined to be the best-fit iso-
therm for the data. Ho et al. [10] performed regression
analysis for the sorption isotherm data of basic dyes
onto sugarcane dust. Among the three (Freundlich,
Langmuir, and Redlich-Peterson) isotherms, the
Redlich-Peterson was determined to be the best-fitting
isotherm for the equilibrium data from the y* analysis.
Other researchers reported that isotherms such as
Langmuir and Sips models provided the best fit for
their experimental data. Kumar et al. [18] performed
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Table 5
Nonlinear regression analyses of two- and three-parameter isotherms for equilibrium data at various adsorbent dosages

0.1g/L 02g/L 03g/L 04g/L 05g/L 0.6g/L
Langmuir
Qm (mg/g) 8.95 7.62 6.70 6.27 4.80 4.92
Ky, (L/mg) 0.91 1.43 2.63 2.45 87.75 28.14
HYBRID 42.78 61.84 43.28 56.89 31.42 13.22
rR? 0.850 0.784 0.688 0.874 0.368 0.485
Ve 1.711 2.474 1.731 1.996 1.257 0.517
Freundlich
Kr(L/g) 3.98 3.89 4.07 3.58 4.15 4.04
1/n 0.31 0.29 0.23 0.26 0.12 0.11
HYBRID 3.22 6.31 6.84 2.32 5.87 3.74
R? 0.985 0.967 0.943 0.989 0.889 0.855
7 0.129 0.252 0.274 0.093 0.234 0.149
Temkin
Ar(L/g) 21.22 63.89 78.35 289.05 26,897.32 294,300
br (J/mol) 1.70 2.30 2.49 3.36 5.92 7.69
HYBRID 19.48 27.50 15.84 20.21 9.68 6.93
rR? 0.899 0.820 0.848 0.890 0.790 0.782
Ia 0.779 1.100 0.634 0.808 0.387 0.207
Redlich—Peterson
Kr(L/g) 244,550.00 243,724.00 245,734.92 91,305.62 245,963.07 245,480.98
ar (L/mg) 61,504.37 63,025.7 60,372.61 25,447.89 59,173.77 60,805.56
Kr/ag (mg/g) 3.98 3.87 4.07 3.59 4.15 4.04
g 0.69 0.71 0.77 0.74 0.88 0.89
HYBRID 4.29 8.42 9.13 3.09 7.84 4.98
rR? 0.985 0.967 0.943 0.989 0.889 0.855
e 0.129 0.252 0.274 0.093 0.234 0.149
Khan
gs (mg/g) 0.26 0.31 0.67 0.45 1.70 1.72
bk 5,851.30 6,159.72 2,272.62 3,178.95 2,272.62 2,272.62
ag 0.685 0.71 0.767 0.743 0.884 0.890
HYBRID 4.30 8.44 9.17 3.12 8.38 5.10
R? 0.985 0.967 0.943 0.986 0.884 0.853
7 0.129 0.253 0.275 0.094 0.251 0.152
Sips
Im (mg/g) 2,235.84 3,885.47 2,080.36 2,450.93 1,128.64 34.70
ag 0.002 0.001 0.002 0.001 0.004 0.13
1/n 0.32 0.29 0.23 0.26 0.12 0.12
HYBRID 431 8.44 9.15 3.10 7.84 5.27
rR? 0.985 0.967 0.943 0.986 0.889 0.842
Ve 0.129 0.253 0.275 0.093 0.235 0.158

Note: Numbers in bold type represent the minimum values of R? and >

isotherm and thermodynamic studies for the adsorp-
tion of methylene blue onto activated carbon. They
determined the optimum isotherm from three (Fre-
undlich, Langmuir, and Redlich-Peterson) isotherms
by nonlinear regression using six error functions. Both
Langmuir and Redlich-Peterson were shown to be the

optimum isotherms for methylene blue adsorption
onto activated carbon. MPSD provides the best param-
eters for the Langmuir isotherm, whereas the coeffi-
cient of determination is the best for the Redlich-
Peterson isotherm. Ho et al. [35] analyzed the experi-
mental data for the sorption of divalent ions (Cu, Nj,
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Fig. 3. Nonlinear regression analyses for equilibrium data
at six different adsorbent doses with Redlich-Peterson
isotherm using HYBRID error function. Error function val-
ues and model parameters are provided in Table 5.
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and Pb) onto peat with six (Freundlich, Langmuir,
Redlich—Peterson, Toth, Temkin, Dubinin-
Radushkevich, and Sips) isotherms with error func-
tions. They reported that Sips model generally pro-
vided the best fit for the experimental data. Ng et al.
[43] performed nonlinear regression analysis using five
error functions to determine the optimum isotherm for
the equilibrium sorption of lead ions onto chitosan
among three (Freundlich, Langmuir, and Redlich-
Peterson) isotherms. They reported that both Langmuir
and Redlich-Peterson are the optimum isotherms for
lead sorption ions onto chitosan, and the SSE error
function provides the best parameters for the isotherms.

3.2. Nonlinear regression with kinetic models

The kinetic data for phosphate sorption onto iron
oxide nanoparticles under various initial I concentrations
(initial P concentration=1, 2, 4, 6, 8, and 10 mg/L; adsor-

Table 6
Error function values and model parameters of kinetic sorption models (initial P concentration =2 mg/L)

SSE HYBRID ARE MPSD EABS
Pseudo-first-order
ge (mg/g) 291 2.90 2.94 2.94 2.94
k1(1/h) 7.77 7.89 8.03 8.03 8.03
SSE 0.11 0.11 0.12 0.12 0.12
HYBRID 0.65 0.65 0.71 0.71 0.71
ARE 4.55 4.51 4.07 4.07 4.07
MPSD 11.14 11.04 9.97 9.97 9.97
EABS 0.76 0.75 0.68 0.68 0.68
SNE 4.83 4.80 4.68 4.68 4.68
Pseudo-second-order
de(mg/g) 3.00 3.00 2.98 2.98 2.98
k> (g/mg/h) 4.95 5.00 5.34 5.34 5.34
SSE 0.01 0.01 0.01 0.01 0.01
HYBRID 0.05 0.05 0.06 0.06 0.06
ARE 1.19 1.15 1.04 1.04 1.04
MPSD 291 2.82 2.55 2.55 2.55
EABS 0.20 0.19 0.18 0.18 0.18
SNE 4.83 4.72 4.65 4.65 4.65
Elovich
o (mg/g/h) 2.67 x10° 1.22x10° 2.60 x 10° 2.60 x 10° 2.60 x 10°
f (g/mg) 6.26 5.98 6.28 6.28 6.28
SSE 0.10 0.10 0.10 0.10 0.10
HYBRID 0.64 0.63 0.64 0.64 0.64
ARE 4.81 4.97 4.80 4.80 4.80
MPSD 11.79 12.17 11.75 11.75 11.76
EABS 0.76 0.80 0.76 0.76 0.76
SNE 4.88 4.99 4.87 4.88 4.87

Note: Numbers in bold type represent the minimum values of relevant error function and SNE.
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Fig. 4. Nonlinear regression analyses for kinetic data (ini-
tial P concentration =2mg/L): (a) comparison of pseudo-
second-order model fits among five error functions; (b)
comparison of model fits from EABS error function among
three kinetic models. Error function values and model
parameters are provided in Tables 6 and 7.

bent dose=0.6 g/L; and shaking time = 10 min—24 h) are
presented in Fig. 1(b). As the initial phosphate concentra-
tion increased, the phosphate sorption capacity increased
at the same reaction time. The kinetic data (Fig. 1(b)) were
analyzed by three kinetic models with five error func-
tions. The estimated error function values and model
parameters for an initial P concentration of 2mg/L are
provided in Table 6. In the pseudo-first-order and
pseudo-second-order models, the lowest SNE values
were obtained from the error functions of the ARE,
MPSD, and EABS (pseudo-first-order = 4.68 and pseudo-
second-order =4.65). In the Elovich model, the lowest
SNE values were obtained from the ARE (4.87) and EABS
(4.87) error functions. The pseudo-second-order model
fitted with five error functions for the kinetic data (initial

3115
4
(=]
g,
—&
o — =y T T T °
s
=11
£
o
.................... a
1 O  initial P conc. = 1 mg/L < initial P conc. = 2 mg/L
A initial P conc. = 4 mg/L *  initial P conc. = 6 mg/L
©  initial P conc. = 8 mg/L X initial P conc. = 10 mg/L
— .« = pseudo second-order Elovich
0 - - - : : : - : :
0 5 10 15 20 25

t (h)

Fig. 5. Nonlinear regression analyses for kinetic data at six
different P concentrations with pseudo-second-order or El-
ovich models using EABS error function. Error function
values and model parameters are provided in Table 7.

P concentration=2mg/L) is shown as an example in
Fig. 4(a). Comparison of the three kinetic models indi-
cated that the pseudo-second-order model had the lowest
SNE value (4.65). Also, both the ARE and EABS provided
the best estimation of all kinetic models. In this study, the
EABS was selected to analyze the kinetic data. Three
kinetic models fitted with the EABS error function for the
kinetic data (initial P concentration=2mg/L) are pre-
sented in Fig. 4(b).

The nonlinear regression analyses of three kinetic
models are presented in Fig. 5. The EABS, R?, and 4
along with optimized parameter values for the kinetic
models are provided in Table 7. At an initial P concen-
tration of 1 mg/L, the pseudo-second-order model had
the highest R* (0.998) and lowest x> (0.001). In the case
of y°, the pseudo-second-order model was also the
best-fitting model followed by the pseudo-first-order
then Elovich models. Considering both R* and 42, the
pseudo-second-order model was the best-fitting model
followed by the pseudo-first-order then Elovich mod-
els. At an initial P concentration of 2mg/L, the
pseudo-second-order model had the highest R* (0.980)
and lowest )(2 (0.004). In the case of )(2, the pseudo-sec-
ond-order model was also the best-fitting model fol-
lowed by the Elovich and then pseudo-first-order
models. The pseudo-second-order model was the best-
fitting model followed by the pseudo-first-order then
Elovich models. At 4mgL~", the Elovich model had
the highest R? (0.976) and lowest XZ (0.006). Thus, the
fitting degree of the kinetic models was classified as
Elovich > pseudo-second-order > pseudo-first-order.
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Table 7
Nonlinear regression analyses of kinetic sorption models for kinetic data at various initial P concentrations

1mg/L 2mg/L 4mg/L 6mg/L 8mg/L 10mg/L
Pseudo-first-order
ge (mg/g) 151 2.94 3.48 3.54 3.98 4.06
ki (1/h) 8.36 8.03 9.77 9.70 10.24 10.59
EABS 0.23 0.68 1.31 1.59 1.73 1.85
rR? 0.896 0.878 0.511 0.461 0.460 0.397
Ve 0.010 0.042 0.120 0.142 0.143 0.166
Pseudo-second-order
ge (mg/g) 1.54 2.98 3.52 3.59 4.02 4.09
k; (g/mg/h) 10.83 5.34 5.59 6.06 6.22 6.74
EABS 0.04 0.18 0.90 1.15 1.28 1.41
R? 0.998 0.980 0.772 0.647 0.622 0.538
e 0.001 0.004 0.047 0.074 0.071 0.091
Elovich
a (mg/g/h) 4.80 < 10° 2.60 x 10° 2.30 % 10° 6.58 x 10° 2.50 x 10° 3.60 x 10°
B (g/mg) 13.07 6.28 5.14 4.58 4.43 4.45
EABS 0.47 0.76 0.26 0.15 0.21 0.18
rR? 0.762 0.839 0.976 0.995 0.986 0.993
e 0.027 0.038 0.006 0.002 0.004 0.002

Note: Numbers in bold type represent the minimum values of R? and 4

The same trend was found at 6, 8 and 10mg/L,
showing that the fitting degree of the kinetic models
could be classified as Elovich > pseudo-second-order >
pseudo-first-order. The Elovich model had the highest
R* and lowest y>. The Elovich (or pseudo-second-
order) model was selected as the best model for the
kinetic data. From the Elovich model, the optimum
parameter values of « = (3.60 x 10°)—(4.80 x 10°) mg/g/h
and f=4.43-13.07g/mg were determined (Table 7).
The Elovich model has been used in several studies to
describe the sorption of phosphate onto adsorbents
[44,45]. Ruan and Gilkes [46] showed that phosphate
sorption kinetics onto synthetic iron oxides such as
goethite and hematite can be well described by the El-
ovich equation. Wang et al. [47] also reported that the
adsorption kinetics of phosphate onto lead—zinc tail-
ings can be best described by the Elovich equation.

4. Conclusions

The best kinetic and isotherm models for phos-
phate sorption onto iron oxide nanoparticles were
determined through nonlinear regression analysis.
Equilibrium model analyses showed that the Redlich-
Peterson (Freundlich) model was found to provide the
best fit to the experimental data in the equilibrium
model analyses, and the optimum parameter values
were obtained by the HYBRID error function. Kinetic

model analyses demonstrated that the Elovich (or
pseudo-second-order) model was found to provide the
best fit to the kinetic data in the kinetic model analy-
ses, and the optimum parameter values produced by
the EABS error function.
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Nomenclature

ag — Khan isotherm model exponent

aR — Redlich-Peterson isotherm constant
(L/mg)

as — Sips isotherm model constant (L/mg)

At — Temkin isotherm constant (L/g)

B — Langmuir isotherm constant (L/mg)

1% — Khan isotherm model constant
(L/mg)

br — Temkin isotherm constant

Ce — equilibrium concentration (mg/L)

Co — adsorbate initial concentration (mg/L)

Cs — adsorbate monolayer saturation
concentration (mg/L)

g — Redlich-Peterson isotherm exponent

ky — rate constant of adsorption (/h)
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) — rate constant of pseudo-second-order
adsorption (mg/g/h)

Kr — Freundlich isotherm constant (L/g)

Ky — Langmuir isotherm constant (L/mg)

Kr — Redlich-Peterson isotherm constant
(L/g)

Ks — Sips isotherm model constant (L/g)

n — number of data points

1/n — Freundlich isotherm constant

p — number of isotherm parameters

qe — amount of phosphate adsorbed on the
adsorbent at equilibrium (mg/g)

Te cale — calculated phosphate adsorption
capacity at equilibrium (mg/g)

e meas — measured phosphate adsorption

' capacity at equilibrium (mg/g)
e meas — average of measured phosphate
' adsorption capacity at equilibrium

(mg/g)

qs — theoretical isotherm saturation
capacity
(mg/g)

q, — amount of phosphate adsorbed on the
adsorbent at time t (mg/g)

Dy cale — calculated phosphate adsorption
capacity at time t (mg/g)

e meas — average of measured phosphate
adsorption capacity at time t (mg/g)

R — universal gas constant (8.314 J/mol K)

R? — coefficient of determination

T — temperature (K)

a — initial adsorption rate (mg/g/h)

B — adsorption constant (g/mg)

Ps — Sips isotherm model exponent
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