
Modeling of effluent quality parameters in a submerged membrane bioreactor
with simultaneous upward and downward aeration treating municipal
wastewater using hybrid models

Majid Bagheria,*, Sayed Ahmad Mirbagheria, Ali Morad Kamarkhanib, Zahra Bagheric

aDepartment of Civil Engineering, K.N. Toosi University of Technology, Vanak square, Tehran, Iran, Tel. +98 9181331137;
Fax: +98 2188770006; email: bagherimajead@yahoo.com (M. Bagheri), Tel. +98 9121374357; email: Mirbagheri@kntu.ac.ir
(S.A. Mirbagheri)
bDepartment of Chemical Engineering, Razi University, Kermanshah, Iran, Tel. +98 9186171061; email: Ali.ka1361@gmail.com
cDepartment and Faculty of Basic Sciences, PUK University, Kermanshah, Iran, Tel. +98 8325245574;
email: zahra90_bagheri@yahoo.com

Received 10 August 2014; Accepted 11 February 2015

ABSTRACT

This research was an effort to develop hybrid multilayer perceptron and radial basis
function artificial neural network–genetic algorithm (MLPANN-GA and RBFANN-GA)
models to accurately predict effluent biochemical oxygen demand (BOD), chemical oxygen
demand (COD), total nitrogen (TN), and total phosphorus (TP) in a submerged membrane
bioreactor. The input variables of the networks were influent BOD, influent COD, influent
TN or influent TP, sludge retention time (SRT), mixed liquor suspended solid, membrane
permeability, and transmembrane pressure. Training procedures of all effluent quality
parameters were successful for both the MLPANN-GA and RBFANN-GA models. The
training and testing models showed an almost perfect match between the experimental and
predicted values. Based upon the statistical analysis, results indicated that there is a very lit-
tle difference between predicted and experimental values of the effluent BOD, COD, TN,
and TP. The predicted and experimental values of the effluent concentrations gave a very
low root mean squared error and a high coefficient of determination very close to one dem-
onstrated high accuracy of these models to predict output variables. It became clear that the
models based on the genetic algorithm (GA) were much better than those models without
GA from the viewpoint of the achievement of an accurate prediction of the effluent BOD,
COD, TN, and TP. The results indicated that the accuracy of all models increased when GA
was applied to neural networks. The mean average error for the hybrid models varied from
3 to 8%.
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1. Introduction

The activated sludge process (ASP) is widely used
for both municipal and industrial wastewater treat-
ment. The submerged membrane bioreactor (SMBR) is
an improvement on the conventional ASP, where the
traditional secondary clarifier is replaced by a mem-
brane unit for the separation of treated wastewater
from the mixed solution in the bioreactor [1,2]. The
SMBR offers significant advantages, such as smaller
footprint, high sludge concentration, high-quality of
effluent, complete separation of the hydraulic
retention time, and sludge retention time (SRT) over
conventional activated sludge systems [2,3]. Moreover,
the treated wastewater (effluent) is free from bacteria
and has the potential for municipal and industrial
reuse.

Treatment process models are essential tools to
assure proper operation and better control of the
wastewater treatment plants [4]. Some deterministic
models have been developed based on the fundamen-
tal biokinetics, such as activated sludge model number
one (ASM1) [5]. Following ASM1, ASM2, ASM2d, and
ASM3 models were developed. Parameter estimation
and calibration of the ASM models require expertise
and significant effort. Moreover, calibration has to be
performed for each specific treatment system. There-
fore, application of ASM models to real systems can
be cumbersome and problematic [6,7]. Understanding
and optimizing a system as complex as a membrane
bioreactor is difficult and time consuming [1,8]. It is
composed of many subprocesses that are highly cou-
pled. Next to the biokinetic processes for bioconver-
sion of pollutants, the separation process takes place
as well as hydrodynamic flows that develop both in
the bioreactor and membrane module [8].

In recent years, artificial neural networks (ANNs)
have been used for monitoring, controlling, and simu-
lation of the ASP for the wastewater treatment plants
[6]. Geissler et al. [9] used an ANN model to predict
the filtration performance in a submerged capillary
hollow fiber membrane treating municipal wastewater.
Cinar et al. [10] have also proposed an ANN model
for an SMBR treating cheese whey and evaluated its
performance at different SRTs. Pendashteh et al. [11]
modeled a membrane sequencing batch reactor treat-
ing hypersaline oily wastewater, which operated at
different total dissolved solids (TDS), various organic
loading rates, and cyclic time. The training, validating,
and testing procedures for the chemical oxygen
demand (COD), total organic carbon, and oil and
grease concentrations were successful and a good cor-
relation was observed between the measured and the
predicted values. Badrnezhad et al. [12] performed a

precise ANN model for flux decline under various
operating parameters in cross-flow ultrafiltration of
oily wastewaters. The ANN model received feed tem-
perature (T), feed pH, transmembrane pressure (TMP),
cross-flow velocity (CFV), and filtration time as inputs;
and gave permeate flux as an output. The results
obtained validate the estimates of the ANN technique
with a good accuracy. According to the result of the
sensitivity analysis based on the correlation coefficient,
the filtration time was the most significant one, fol-
lowed by T, CFV, feed pH, and TMP.

In order to achieve the objective of this study, two
types of feedforward artificial neural network (FANN)
were employed, which are most commonly used in
classification problems, namely multilayer perceptron
(MLP) and radial basis function (RBF). They were
selected because of their ability to detect complex non-
linear relationships in the data, representing two dif-
ferent approaches to solving problems. The MLP
employs hyperplanes to divide the pattern space into
various classes, while RBF uses hyperspheres [13]. The
RBFs have been successfully applied for solving
dynamic system problems because they can predict
the behavior directly from input/output data [14,15].
Many researchers have studied the MLPs and recom-
mend them for water quality prediction measures,
such as total suspended solids (TSS), biochemical
oxygen demand (BOD), COD, dissolved oxygen (DO),
and ammonia [10,11].

The ANN is typically used as a black-box
approach, hiding the physics of the model process,
and lacks for extrapolative capacity [16]. In addition,
the gradient algorithm usually used in the backpropa-
gation (BP) neural network is a local search algorithm
and may tend to fall into a local minimum and results
are inconsistent and in unpredictable performances
[16,17]. Genetic algorithm (GA) based on the princi-
ples of survival of the fittest strategy, has been proven
to be a powerful optimization method to solve prob-
lems with objective functions that are not continuous
or differentiable [18]. The introduction of GA might
avoid trapping into the local minimum of the ANNs.
Hybrid models employ a combination of ANNs and
GAs. The ANN-GA coupled models have been devel-
oped to optimize the various biological processes
[12,16]. Badrnezhad et al. [12] modeled and optimized
flux decline using hybrid ANN-GA under various
operating parameters in the cross-flow ultrafiltation of
oily wastewaters. By applying GA, optimum condi-
tions, which lead to the highest and lowest flux value
were achieved when feed pH were in the range of
alkaline solutions and at about isoelectric point,
respectively. Fang et al. [16] developed an integrated
dynamic model through combining a mechanistic
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model, an ANN model, and a GA approach, in order
to simulate the performance of a full-scale municipal
wastewater treatment plant (WWTP) with substantial
influent fluctuations. They concluded that compared
with the mechanistic model and the ANN model, the
integrated model was able to capture sufficient resid-
ual information to compensate for the inaccuracy of
the mechanistic model and improve the extrapolative
capability of the ANN model.

However, this hybrid model used to optimize the
weights and thresholds of multilayer perceptron artifi-
cial neural networks (MLPANNs) and radial basis
function artificial neural networks (RBFANNs) in the
prediction of the effluent quality parameters of an
SMBR treating municipal wastewater has not been
reported. This research was an effort to develop
hybrid MLPANN-GA and RBFANN-GA models to
accurately predict effluent BOD, effluent COD, effluent
total nitrogen (TN), and effluent total phosphorus (TP)
in an SMBR treating municipal wastewater under vari-
ous operating parameters. The operating parameters,
including influent BOD, influent COD, influent TN or
influent TP, SRT, mixed liquor suspended solids
(MLSS), membrane permeability (Perm), and TMP
were utilized in the ANN modeling processes. To the
best of our knowledge, this is the first research utiliz-
ing hybrid MLPANN-GA and RBFANN-GA models
to predict the effluent quality parameters for an

SMBR. Furthermore, sensitivity analyses were
performed to determine the effect and importance
order of each operating parameter on the effluent
concentrations.

2. Materials and methods

2.1. Pilot plant configuration and operating conditions

An SMBR with simultaneous upward and down-
ward aeration was used to treat municipal wastewater
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Fig. 1. Configuration of the submerged membrane bioreactor.

Table 1
Specifications of the hollow fiber membrane module

Description Value

Material Polypropylene
Capillary thickness 40–50 μm
Capillary outer diameter 450 μm
Capillary pore diameter 0.01–0.2 μm
Gas permeation 7.0 × 10−2 cm3/cm2 S cm Hg
Porosity 40–50%
Lengthways strength 120,000 kPa
Designed flux 6–9 L/M2/H
Area of membrane module 8 m2/module
Operating pressure −10 to −30 kPa
Flow rate 1.0–1.2 m3/d
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in this research. Fig. 1 shows the schematic diagram of
the SMBR. The pilot plant comprised a feeding tank,
an aeration tank or a bioreactor, and an effluent tank.
The feeding tank was made of plastic with a size of
0.8 by 0.6 m. It was located 1.5 m above the ground
level to establish a continuous flow. The membrane
module was placed in the aeration tank in order to
achieve simultaneous aeration/filtration process. The
vertically oriented hollow fiber SMBR had an aeration
reactor with the size of 0.8 by 0.8 m. It was attached
to two tubes with 1 cm in diameter, which conducted
treated wastewater to the effluent tank. The polypro-
pylene hollow fiber membrane had a nominal pore
size of 0.04 μm and the overall membrane surface area
was 8 m2 per module. Table 1 shows the detailed
specifications of the hollow fiber membrane. The
experiments were totally executed for 60 d, so that
they were divided into two experimental periods. The
conventional aeration from the bottom of the bioreac-
tor or upward aeration was performed for the first
30 d. The downward aeration was performed in
addition to the upward aeration for the next 30 d. The
air flow was continuously provided 14 min for the
upward aeration and 1 min for downward aeration
during the simultaneous upward and downward
aeration.

2.2. Municipal wastewater characteristics

The pilot plant was located in the Ekbatan WWTP,
in Tehran, Iran. Analysis of the WWTP influent was
carried out for a four-month period. According to the
results obtained from the raw wastewater analysis, the
maximum values were selected as critical values in

order to design the pilot plant. Table 2 shows the
characteristics of influent wastewater used in this
study.

2.3. Analytical methods

Temperature, pH, DO, BOD, COD, TN, TP, TSS,
TDS, MLSS, and mixed liquor volatile suspended sol-
ids (MLVSS) were measured in this study. The pH
and temperature were measured using a digital pH
meter. A DO meter (YSI 5000) was utilized to deter-
mine DO. Biodegradability was measured by five-day
BOD test according to the standard methods [19]. The
seed for BOD5 test was obtained from the Ekbatan
WWTP. The COD was determined according to the
standard methods [19]. At the Ekbatan WWTP
laboratory, TN and TP were measured with aid of a

Table 2
Characteristics of municipal wastewater used in this study

Parameter (unit) Average Maximum Std.

Tinf (˚C) 23 25.8 2.6
DO 0 0 0
pHinf (˚C) 8.2 8.9 0.4
BODinf (mg l−1) 156 175 11
CODinf (mg l−1) 262 285 13
TNinf (mg l−1) 29 38 2.6
NHþ

4 �Ninf (mg l−1) 18 23.1 4
NOþ

3 �Ninf (mg l−1) 0.8 0.96 0.2
TPinf (mg l−1) 13 16.54 2.5
TDSinf (mg l−1) 460 630 120
TSSinf (mg l−1) 165 180 70

Note: Std: The standard deviation of data-sets.
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Fig. 2. Topological architectures of the neural networks: MLP (a) and RBF (b).
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spectrophotometer (The Hach DR 5000 UV–vis Labo-
ratory Spectrophotometer). Other operational parame-
ters such as, permeate flow rate, TMP, and permeate
turbidity were monitored by sensors and gages
installed in the SMBR. All sensors and gages were
cleaned and calibrated weekly. TMP values were nor-
malized to a standard temperature of 20˚C according
to Eq. (1) [20].

TMP ¼ ðTMPTÞ:e0:0239:ðT�20Þ (1)

where, TMPT is the transmembrane pressure monitored
at temperature T (˚C), and T is the temperature of
mixed liquor measured in the membrane basin.

2.4. Theory and methodology of ANN-based modeling

An ANN is composed of many single elements
called neurons. An artificial neuron is a single compu-
tational processor, which has two operators (1) sum-
ming junction and (2) transfer function [21,22]. Each
neuron is connected to other neurons through commu-
nication links, each with an associated weight that
multiplies the signal transmitted. The weights repre-
sent information being used to solve a problem and
have to be determined by a learning (training)
algorithm [21]. The transfer function determines the
input–output behavior and adds non-linearity and
stability to the network [23]. A single neuron can be
described by Eq. (2).

k ¼
Xn

i¼1
xi � wi þ b (2)

where wi (i = 1, n) is the connection weights, xi is the
input variable, n is the number of input variables, i is
the integer index, and b is called bias.

The summing junction operator of a single neuron
summarizes the weights and bias into a net input λ
known as argument to be processed. The bias b is
much like a weight, except that it has a constant input
of unity. The transfer function takes the argument λ
and produces the scalar output of a single neuron
[23].

An MLPANN contains neurons structured in par-
allel layers, from inputs to outputs, as illustrated in
Fig. 2. The input nodes receive the data values and
pass them on to the first hidden layer nodes. Each one
collects the input from all input nodes after multiply-
ing each input value by a weight, attaches a bias to
this sum, and passes on the results through a non-lin-
ear transformation [24]. This forms the input either for
the second hidden layer or the output layer that oper-
ates identically to the hidden layer. The resulting
transformed output from each output node is the net-
work output [24,25]. The network needs to be trained
using a training algorithm, such as Levenberg–Marqu-
ardt (LM) algorithm, incremental backpropagation,
gradient descent backpropagation (GDB), gradient
descent with adaptive learning rate backpropagation,
and batch backpropagation. Basically, the objective of
training patterns is to reduce the global error.

Fig. 2 shows that the structure of the basic
RBFANN contains one input layer, one output layer,
and one hidden layer. The transformation from the
input nodes to the hidden nodes is a non-linear one,
and training of this portion of the network is generally
accomplished by an unsupervised fashion. The train-
ing of the network weights between the hidden and
output layers occurs in a supervised fashion based on
target outputs [24]. The hidden layer neurons in the
middle of the basis function only have local reactions
of input function for the RBFANN.

The performances of the ANN models are measured
by coefficient of determination (R2) and root mean
squared error (RMSE) between the predicted values of

Table 3
Characteristics of measured variables used in modeling using the MLPANN-GA and RBFANN-GA

Input variable number Input variable Range Avg. Std. Output variable Range Avg. Std.

1 BODin (mg l−1) 130–175 156 11 BODout (mg l−1) 3–17 6.3 3.5
2 CODin (mg l−1) 230–285 262 13 CODout (mg l−1) 7–29 11.6 5.3
3 TNin (mg l−1) 25–38 29 2.6 TNout (mg l−1) 1.4–3 1.9 0.4

TPin (mg l−1) 5–16.54 13 2.5 TPout (mg l−1) 2–6.5 3.2 1.3
4 SRT (d) 30–50 40 8
5 MLSS (mg l−1) 3,800–5,400 4,578 477
6 Perm (LMH/kPa) 1.02–1.65 1.3 0.18
7 TMP (kPa) 14.3–21.5 18.6 1.9

Note: Avg: The average of data-sets and Std: The standard deviation of data-sets.
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the network and the experimental values, which are
calculated by Eqs. (3) and (4), respectively [11].

R2 ¼ 1�
Xn
i¼1

ðy�i � yðiÞp Þ2=
Xn
i¼1

ðy�i � �yÞ2 (3)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðy ið Þ
p � y�i Þ2

s
(4)

where �y is the average of y over the n data, and y�i
and y

ðiÞ
p are the ith target and predicted responses,

respectively.

2.5. Theory and methodology of GA-based optimization

For the first time, the concept of GA was devel-
oped by Holland at the University of Michigan [26].

GA has three key genetic operators: (1) selection, (2)
crossover, and (3) mutation. Algorithm is started with
a set of random solutions called population. Solutions
from one population are used to form a new popula-
tion. This is motivated by a hope that the new popula-
tion will be better than an old population [26,27].
Selection is the survival of the fittest, which means the
highest quality chromosomes will stay within the pop-
ulation. In the selection process, the solutions are
selected according to their values of objective function
(fitness). The best solution is returned to represent the
optimum solution [27]. There are different selection
methods as stochastic uniform, remainder, uniform,
shift linear, roulette, and tournament. The tournament
method can be described by Eq. (5).

si ¼ Fi=
XNk

j¼1

Fj (5)

where τi is the weight of ith individual within popula-
tion. Moreover, the sum of the elective probabilities of
all the individuals within population is 1 as it is deter-
mined by Eq. (6).

XNk

i¼1

si ¼ 1 (6)

Crossover is applied on two individuals, called
parents, and originates two new individuals called
sons, which contain the combined traits of the
parents [28]. There are different crossover methods as
one-point, two-point, and uniform crossover. The
most straightforward approach is one-point crossover,
where those parts of the strings that exceed a
randomly selected point are simply swapped. The
underlying idea is that the strings with a high fitness
contain building blocks of valuable genetic informa-
tion [29]. Two-point crossover calls for two points to
be selected on the parent organism strings. Every-
thing between the two points is swapped between
the parent organisms, rendering two child organisms.
The uniform crossover uses a fixed mixing ratio
between two parents. Unlike one- and two-point
crossover, the uniform crossover enables the parent
chromosomes to contribute the gene level rather than
the segment level [30].

In general, mutation operator specifies how the GA
makes small random changes in the individuals in the
population to create mutation children. Mutation pro-
vides genetic diversity and enables the GA to search a
broader space [31]. In binary encoding, mutation can
be achieved simply by flipping between 0 and 1.
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Fig. 3. Flowchart of ANN-GA hybrid methodology in the
optimization process.
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Mutation can occur at a single site or multiple sites
simultaneously [29]. There are different mutation
methods as random (uniform), non-uniform, and
Gaussian. In uniform mutation, a gene is replaced
with a random value between its lower and upper
bounds. On the other hand, in non-uniform mutation,
the step size decreases as the generations increase,
thus making a uniform search in the initial space and
very little at the later stage. In Gaussian mutation

operator, two parameters: the mean (usually set to
zero), and the standard deviation of the Gaussian
distribution are required [29,32].

2.6. Pre-modeling analyses

In order to obtain convergence within a reasonable
number of cycles, the input and output data should

6 8 9 10 12

PL-GDB (1) 0.71 0.79 0.91 0.68 0.66

PL-LM (2) 0.79 0.85 0.94 0.73 0.69

HTS-GDB (3) 0.84 0.87 0.95 0.81 0.73

HTS-LM (4) 0.88 0.89 0.98 0.82 0.78

1
1

1

1 1
2 2 2

2 2
3 4 3

3
3

4 3 4
4 4

0

0.2

0.4

0.6

0.8

1

R
²

Number of neurons

6 8 9 10 12

PL-GDB (1) 0.37 0.29 0.26 0.33 0.39

PL-LM (2) 0.34 0.27 0.22 0.29 0.36

HTS-GDB (3) 0.31 0.24 0.18 0.29 0.31

HTS-LM (4) 0.28 0.19 0.11 0.25 0.28

1

1 1
1

1
2

2
2

2
2

3
3

3

3 34

4

4

4 4

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

R
M

SE
 (m

g/
L

)

Number of neurons

Fig. 4. Comparison of GDB and LM algorithms with HTS and pure linear function (PL), as measured by number of
neurons during validation phase.

Fig. 5. Effluent BOD models by RBFANN-GA and MLPANN-GA according to train and test data-sets.
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be normalized and scaled to the range of 0–1 by
Eq. (7) [33]:

xni ¼ ðxi � xminÞ=ðxmax � xminÞ (7)

where xi is the initial value, xmax and xmin are the
maximum and minimum of the initial values, and xni
is the scaled value. After the training and testing of
the ANN, the output data were scaled to the real-
world values through Eq. (8).

xi ¼ xni xmax � xminð Þ þ xmin (8)

Simulation models of operational parameters
were established based on the theory of FANN,
namely RBFANN and MLPANN using the mathemati-
cal software program MATLAB. Experimental data
over 60 d were used in artificial neural network
modeling. The statistical characteristics of the
measured variables have been presented in Table 3.
The flowchart diagram of ANN–GA hybridization
used to predict effluent BOD, COD, TN, and TP is
shown in Fig. 3.

3. Results and discussion

3.1. Optimal architectures of the neural networks

In order to predict effluent BOD, COD, TN, and TP
by RBFANN-GA and MLPANN-GA, influent BOD,
COD, TN or TP as well as SRT, MLSS, membrane
Perm, and TMP were used as inputs of the neural net-
works. Each network structure was selected after run-
ning a number of preliminary experiments to explore
the training speed and response time of different archi-
tectures. To keep the network structure as simple as
possible, three layers were used in all networks. The
optimal architectures insure training with reasonable
speed and short simulation time for a specific network
performance. The RBFANN regularization network
employs the same number of neurons as the input data
points. The number of neurons of the MLPANNs was
kept equal to the number of training exemplars for bet-
ter comparison of both ANN performances. A two-
stage training process was applied for the RBFANNs.
The K-means to assign the radial centers in the data-
set and K-nearest neighbors to compute the deviation
of each center were used in the first stage. The output
layer was optimized with pseudo-inverse method in
the second stage. To determine the best network

Fig. 6. Effluent COD models by RBFANN-GA and MLPANN-GA according to train and test data-sets.
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function, various algorithms were studied. The RBF-
ANN-GA applied the newrbe function to the input
data as the optimal network function. The newrbe
function created a two-layer network with biases for
both layers. The first layer followed a radial basis
transfer function. Consequently, its weighted inputs
were calculated with the Euclidean distance weight
function and its net input with product net input
function. The second layer followed a linear transfer
function. Consequently, its weighted inputs were
calculated with dot product weight function and its
net input with sum net input function. The spread of
radial basis function was equal to its default value, 1.
A large spread value results in a smooth function
approximation, but by contrast, a small spread value
can result in numerical problems [13,34]. The newrbe
function selected 75% of normalized data to train

and 25% to test the RBFANN-GA models. The
RBFANN-GA was designed in a loop that applied the
newrbe function to the data for less than 50 times in
order to minimize error. The optimum network in the
modeling process was chosen on the basis of the mini-
mum average error.

The MLPANN-GA applied the newff function to
the input data as the optimal network function. There-
fore, it created a feedforward backpropagation neural
network. The first layer of the network had weights
coming from the inputs and each subsequent layer
had a weight coming from the previous layer. The
transfer function of this network was a differentiable
transfer function. The LM was the default training
function because it was very fast, but it required a lot
of memory to run. The newff function selected 60% of
normalized data to train, 20% to test, and 20% to

Table 4
Effect of single and joint variables on the effluent BOD models by RBFANN-GA and the MLPANN-GA

Input variable No.

BOD models (RBFANN-GA) BOD models (MLPANN-GA)

Importance order

R2 RMSE (mg l−1) R2 RMSE (mg l−1)

Train Test Train Test Train Test Train Test

1 0.331 0.524 3.01 1.51 0.315 0.601 3.14 2.34 4
2 0.399 0.604 2.54 1.14 0.398 0.567 2.69 1.26 3
3 0.334 0.345 2.66 3.98 0.327 0.301 2.86 4.97 7
4 0.355 0.462 2.62 3.58 0.337 0.429 3.01 4.77 6
5 0.667 0.476 2.39 3.51 0.658 0.461 2.41 4.22 5
6 0.684 0.866 1.61 2.05 0.659 0.856 1.68 2.11 1
7 0.552 0.853 2.46 2.07 0.557 0.842 2.55 2.11 2
6–1 0.54 0.63 1.99 2.65 0.49 0.55 2.48 3.15 3
6–2 0.58 0.61 1.97 2.65 0.52 0.58 2.44 3.12 2
6–3 0.32 0.31 4.12 4.19 0.31 0.31 4.13 4.24 6
6–4 0.42 0.34 3.45 3.68 0.39 0.33 3.72 3.75 5
6–5 0.47 045 3.04 3.11 0.45 0.46 3.25 3.09 4
6–7 0.77 0.78 1.62 2.14 0.65 0.76 1.95 1.88 1
6–7–1 0.71 0.72 1.79 1.88 0.71 0.69 1.81 1.91 3
6–7–2 0.74 0.73 1.73 1.79 0.71 0.68 1.75 1.86 2
6–7–3 0.51 0.54 2.04 2.44 0.51 0.53 2.13 2.63 5
6–7–4 0.65 0.72 1.86 1.89 0.59 0.63 1.95 2.23 4
6–7–5 0.75 0.85 1.61 1.53 0.77 0.76 1.59 1.84 1
6–7–5–1 0.81 0.81 1.29 1.26 0.78 0.76 1.31 1.44 2
6–7–5–2 0.84 0.84 1.17 1.18 0.82 0.79 1.21 1.24 1
6–7–5–3 0.69 0.68 1.72 1.54 0.68 0.65 1.79 1.82 4
6–7–5–4 0.78 0.69 1.58 1.52 0.74 0.68 1.66 1.69 3
6–7–5–2–1 0.91 0.93 0.65 0.53 0.92 0.92 0.63 0.67 1
6–7–5–2–3 0.89 0.87 0.74 0.81 0.88 0.86 0.77 0.83 3
6–7–5–2–4 0.91 0.91 0.68 0.59 0.91 0.89 0.69 0.72 2
6–7–5–2–1–3 0.92 0.94 0.51 0.49 0.92 0.92 0.57 0.64 2
6–7–5–2–1–4 0.97 0.96 0.42 0.49 0.95 0.93 0.55 0.59 1
6–7–5–2–1–4–3 0.98 0.99 0.41 0.44 0.97 0.97 0.51 0.52 1

Note: The numbers 1–7 refers to input variables identified in Table 3.
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validate the MLPANN-GA models. To train the
MLPANN, we need to choose a proper structure for
the ANN along with suitable activation functions for
its neurons. To determine the best BP training algo-
rithm, various BP algorithms were studied. Hyperbolic
tangent sigmoid transfer function (tansig) at hidden
layer and linear transfer function (purelin) at output
layer were found to be the optimal functions. In addi-
tion, four neurons were used in the hidden layer as
initial value for all BP algorithms. The MLPANN-GA
was trained by different learning algorithms for a
maximum of 250 epochs. Nevertheless, the LM algo-
rithm resulted in the optimum models for train and
test data after less than 20 iterations. The LM had
smaller RMSE values compared to other backpropaga-
tion algorithms. So, the LM was considered the train-
ing algorithm in this research. The predictive accuracy
of networks in the ANN models depend on the

number of hidden neurons, learning functions, and
learning rate [35], so these variables were chosen to
optimize the ANN structure by the GA program. The
optimum number of neurons in the hidden layer was
determined based on the minimum value of RMSE for
the training and prediction set. Based on the result of
this study, the optimum models for the prediction of
the effluent BOD, COD, TN, and TP are obtained with
the hidden layer consisting of nine neurons.

The results of two training algorithms, including
the LM and the GDB were compared in order to
determine the effect of GA on the MLPANN-GA mod-
els. Furthermore, two transfer functions, including
hyperbolic tangent sigmoid (HTS) function and pure
linear (PL) function were also used to examine the
effect of GA on the MLPANN-GA models. The statisti-
cal criteria of RMSE and R2 for each structure in
validation phase of MLPANN modeling are given in

Table 5
Effect of single and joint variables on the effluent COD models by RBFANN-GA and the MLPANN-GA

Input variable No.

COD models (RBFANN-GA) COD models (MLPANN-GA)

Importance order

R2 RMSE (mg l−1) R2 RMSE (mg l−1)

Train Test Train Test Train Test Train Test

1 0.586 0.533 4.97 5.48 0.554 0.514 5.26 5.37 4
2 0.611 0.518 4.77 5.12 0.577 0.523 4.82 4.95 3
3 0.325 0.325 6.95 6.87 0.322 0.317 7.05 7.12 7
4 0.411 0.348 6.49 6.22 0.409 0.313 6.55 6.75 6
5 0.572 0.519 5.12 5.85 0.555 0.501 5.48 5.99 5
6 0.695 0.875 3.14 2.95 0.686 0.817 3.68 3.13 1
7 0.612 0.788 3.87 3.49 0.584 0.741 4.11 4.05 2
6–1 0.661 0.675 3.25 3.83 0.662 0.651 3.57 3.94 3
6–2 0.707 0.721 3.18 3.42 0.695 0.687 3.35 3.58 2
6–3 0.528 0.475 4.83 5.37 0.514 0.388 4.94 5.55 6
6–4 0.543 0.572 4.79 4.63 0.548 0.531 4.68 4.97 5
6–5 0.613 0.594 4.12 4.55 0.599 0.586 4.43 4.89 4
6–7 0.711 0.789 2.99 2.86 0.699 0.714 3.02 2.96 1
6–7–1 0.701 0.601 2.92 3.42 0.688 0.587 3.25 3.79 3
6–7–2 0.703 0.608 2.87 3.35 0.674 0.604 2.93 3.52 2
6–7–3 0.512 0.527 4.04 3.93 0.496 0.486 4.44 4.62 5
6–7–4 0.675 0.569 3.44 3.71 0.619 0.585 3.68 4.19 4
6–7–5 0.699 0.815 2.68 2.75 0.701 0.648 2.67 3.11 1
6–7–5–1 0.807 0.814 2.33 2.17 0.798 0.802 2.47 2.59 2
6–7–5–2 0.812 0.826 2.24 2.12 0.811 0.813 2.43 2.37 1
6–7–5–3 0.623 0.622 2.85 3.11 0.622 0.617 3.15 3.23 4
6–7–5–4 0.744 0.726 2.61 2.28 0.717 0.703 2.66 2.82 3
6–7–5–2–1 0.915 0.927 1.76 1.73 0.894 0.899 1.85 1.89 1
6–7–5–2–3 0.785 0.774 2.34 2.41 0.712 0.771 3.41 2.36 3
6–7–5–2–4 0.871 0.862 1.89 2.18 0.852 0.826 2.11 2.37 2
6–7–5–2–1–3 0.945 0.932 1.76 1.95 0.933 0.929 1.84 2.01 2
6–7–5–2–1–4 0.975 0.968 1.64 1.72 0.966 0.965 1.72 1.75 1
6–7–5–2–1–4–3 0.996 0.998 1.12 1.12 0.989 0.993 1.21 1.19 1

Note: The numbers 1–7 refers to input variables identified in Table 3.
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Fig. 4. The RMSE of HTS transfer function and nine
neurons with LM learning algorithm is the lowest
value. Moreover, Fig. 4 shows that the coefficient of
determination value of this structure is low. Compar-
ing the RMSE and R2 values for all neural network
structures, the optimized structure was found to be
with nine neurons in hidden layer, and with LM algo-
rithm and HTS function. Because gradient decent usu-
ally slows down near minima, so the LM method can
be used to obtain faster convergence. LM is a blend of
simple gradient descent and the Gauss–Newton
method [11]. The LM has found to be the fastest
method for training moderate-sized feedforward neu-
ral networks, where the training rate is 10 to 100 times
faster than the usual GDB method [36]. The HTS func-
tion was selected for the hidden neurons due to its
better prediction performance than other transfer func-
tions among various transfer functions available in the
Matlab. The HTS function was bounded between 0
and 1, so the input and the output data were normal-
ized to the same range as the transfer function used.
The optimal structure had the highest R2 value equal
to 0.98 and the least RMSE value equal to 0.11 mg−1

for the denormalized data.

3.2. BOD and COD models by RBFANN-GA and
MLPANN-GA

The selected neural networks were used to predict
the effluent BOD and COD for different inputs in the
domain of training, testing, and all data-sets. The
effluent BOD and COD values for the train and test
models by RBFANN-GA and MLPANN-GA are
plotted against operational time in Figs. 5 and 6,
respectively. As can be seen, the generalization perfor-
mances of the three-layer ANNs show no oscillation.
The results confirm excellent prediction performance
of the ANNs based on the training and testing models
for the effluent BOD and COD. The training proce-
dures in the prediction of the effluent BOD and COD
were successful for both RBFANN-GA and MLPANN-
GA models. The train and test models by RBFANN-
GA and MLPANN-GA showed an almost perfect
match between the experimental and the predicted
values of the effluent BOD and COD. The results of
the effluent BOD and COD modeling using the RBF-
ANN-GA and the MLPANN-GA for the training and
testing data were in a good agreement with the results
of previous researches [7,10].

Fig. 7. Effluent BOD and COD models by RBFANN-GA and MLPANN-GA according to all data-set.
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The implementation of the modeling started with
the determination of the variable combinations exhibit-
ing better results in the ANN model output [6]. For
this purpose, in this research, the effluent BOD and
COD were modeled separately by considering various
single and joint variables as inputs of RBFANN-GA
and MLPANN-GA in order to examine the effect of
each variable on the effluent BOD and COD values.
The joint inputs were used in groups of two, three,
four, five, and six variables. Analysis of R2 and RMSE
values showed that Perm among single input vari-
ables, and Perm and TMP among groups of two vari-
ables significantly affected the variation of the effluent
BOD and COD models. The most important variables
among groups of three variables were Perm, TMP,
and MLVSS, and the noteworthy variables among
groups of four variables were Perm, TMP, MLVSS,
and influent COD. In addition, Perm, TMP, MLVSS,
influent COD, and influent BOD among groups of five
variables, and Perm, TMP, MLVSS, influent COD,
influent BOD, and SRT between groups of six vari-
ables majorly affected the effluent BOD and COD
models (Tables 4 and 5). The results showed high col-
laboration for the RBFANN-GA and MLPANN-GA

models with single and joint input variables. The
RBFANN-GA modeled effluent BOD and COD was
more accurate compared with the MLPANN-GA due
to higher R2 and lower RMSE values. The simulated
values of the effluent BOD and COD using the
RBFANN-GA models did not fluctuate noticeably for
single input and joint input variables. On the other
hand, the RBFANN-GA models indicated more
uniform results comparing with the MLPANN-GA
models. It was observed that both RBFANN-GA and
MLPANN-GA show more accurate and uniform
models with an increase in the number and correlation
of input data-sets.

Sensitivity analyses [37] were performed to exam-
ine the sensitivity of the effluent BOD and COD to
changes of input variables. The effect of a variable on
the RBFANN-GA and MLPANN-GA models com-
pared with the other variables was determined by its
importance order. Tables 4 and 5 show the importance
order of each input variable and the joint variables for
the prediction of the effluent BOD and COD. The vari-
able with higher rank of importance indicted less
RMSE and more R2 values for the obtained models as
well as a good fitting between experimental and

Fig. 8. Regression plots of RBFANN-GA and MLPANN-GA for the prediction of effluent BOD and COD.
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predicted values of the effluent BOD and COD. The
sensitivity analyses of input variables for the effluent
BOD and COD models by RBFANN-GA and MLP-
ANN-GA indicated that the effluent BOD and COD
are influenced by Perm, TMP, MLVSS, influent COD,
and influent BOD, SRT, and influent TN, respectively.
The values of sensitivity to Perm, TMP, MLVSS, influ-
ent COD, influent BOD, SRT, and influent TN for
effluent BOD were 68.1, 66.3, 54.2, 32.5, 24.9, 12.4, and

6.4%, respectively. The values of sensitivity to men-
tioned variables for effluent COD were 69.7, 67.5, 55.1,
31.9, 24.7, 13.5, and 7.8%, respectively. This study
shows that the Perm and TMP as well as MLVSS sig-
nificantly affect the effluent BOD and COD models.

Fig. 7 shows the effluent BOD and COD models
by RBFANN-GA and MLPANN-GA according to all
experimental data-set. The prediction of the effluent
BOD and COD were successful for both the

Fig. 9. Residuals of RBFANN-GA and MLPANN-GA for the prediction of effluent BOD and COD.

Table 6
Comparison of RBFANN and MLPANN with and without applying GA for the BOD and COD models

Model

R2 RMSE (mg l−1)

Percentage of error (%) Rank of model (accuracy)All Train Test All Train Test

Biochemical oxygen demand (BOD) models
RBFANN 0.921 0.911 0.914 0.59 0.61 0.61 10 3
RBFANN-GA 0.998 0.980 0.990 0.35 0.41 0.44 5 1
MLPANN 0.872 0.888 0.875 0.79 0.68 0.71 13 4
MLPANN-GA 0.990 0.970 0.970 0.42 0.51 0.53 9 2
Chemical oxygen demand (COD) models
RBFANN 0.904 0.932 0.938 1.68 1.27 1.23 15 3
RBFANN-GA 0.991 0.996 0.998 1.15 1.12 1.12 8 1
MLPANN 0.885 0.843 0.827 2.21 2.28 2.32 18 4
MLPANN-GA 0.981 0.989 0.993 1.24 1.21 1.19 10 2
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RBFANN-GA and the MLPANN-GA models. Both
models showed an almost perfect match between the
experimental and the predicted values of the effluent
BOD and COD. This study indicates that the
RBFANN-GA has stronger approximation and gener-
alization ability than the MLPANN-GA with regard
to our models for the effluent BOD and COD.

The verification of an ANN model is substantiat-
ing that the model is transformed from one form into
another with sufficient accuracy. The ANN models
were verified by evaluating their performance in accu-
rately predicting the statistical features of the
observed data. The autocorrelation functions of the
predicted values were compared with the measured
values. Another criterion applied for judging the
validity of the models is the assessment of the good-
ness of fit according to various available criteria.
Fig. 8 shows the regression lines for all data-sets
based on the RBFANN-GA and MLPANN-GA models
for the effluent BOD and COD values. The values of
R2 for BOD models by RBFANN-GA and MLPANN-
GA were 0.998 and 0.990, respectively, compared with
the findings of previous studies [7,10], where R2

varied from 0.85 to 0.91. The values of R2 for COD

models were 0.991 and 0.981, respectively, compared
with the findings of previous studies [7,38], where R2

varied from 0.82 to 0.92.
Additionally, a way to measure the predictive

capability of a model is to test it on a set of data not
used in the simulation process [39]. This has been
described in literature as test set and the data used for
simulation is training set. In order to verify our mod-
els, a set of the effluent BOD and COD data was used
to investigate the predictive ability of the models. The
RMSE values for the train and test (verification) mod-
els by RBFANN-GA for BOD were 0.41 and 0.44 mg−1,
respectively. The RMSE values for the train and test
models by MLPANN-GA were 0.51 and 0.52 mg−1,
respectively. The RMSE values for both train and test
(verification) models by RBFANN-GA for COD were
1.12 mg−1. The RMSE values for the train and test
models by MLPANN-GA were 1.21 and 1.19 mg−1,
respectively. The mean average error for the predic-
tion of effluent BOD by RBFANN-GA and MLPANN-
GA were 5 and 9% of input values, respectively. The
mean average error for the prediction of effluent COD
by RBFANN-GA and MLPANN-GA were 8 and 10%,
respectively.

Fig. 10. Effluent TN models by RBFANN-GA and MLPANN-GA according to train and test data-sets.
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The residuals of the effluent BOD and COD
models attained by the RBFANN-GA and the
MLPANN-GA for all data-set have been plotted out
against the frequency of data in Fig. 9. A normal dis-
tribution of variation results in a Gaussian curve, with
the highest point in the middle and smoothly curving
symmetrical slopes on both sides of center. The results
of this study illustrate an approximately normal distri-
bution of residuals produced by the RBFANN-GA and
the MLPANN-GA models. The Gaussian curve dem-
onstrates that our results are symmetrical and their
axis round around zero for all data-sets. In these
hybrid ANN-GA models, GA was used to optimize
the weights and thresholds of ANNs for minimizing
the error between the actual and target outputs. The
ANN models in this study were optimized with GA
because GA is good at effectively searching large and
complex spaces to find nearly global optima. GA indi-
cates an increasingly attractive alternative to gradient-
based techniques, such as RBFANN and MLPANN as
the complexity of the search space increases [40]. The
effects of applying GA on the RBFANN and the
MLPANN in the prediction of effluent BOD and COD
have been presented in Table 6. The results showed

that the precision and accuracy of all effluent BOD
and COD models increased when GA was applied to
the ANN models. The results of RMSE and R2 for the
effluent BOD and COD models indicated that
RBFANN-GA is the most precise model with a mean
average error from 5 to 8%.

3.3. TN and TP models by RBFANN-GA and MLPANN-
GA

The results of effluent TN and effluent TP model-
ing using the RBFANN-GA and MLPANN-GA for the
train and test models have been plotted versus opera-
tional time in Figs. 10 and 11. The prediction perfor-
mance of the RBFANN-GA and MLPANN-GA models
show no oscillation for the effluent TN and effluent
TP. The results showed excellent prediction perfor-
mance of the ANNs for the models according to the
train and test data-sets. For both RBFANN-GA and
MLPANN-GA models predicting the effluent TN and
effluent TP, the training procedures were successful.
The train and test models showed an almost perfect
match between the experimental and the predicted
values of effluent TN and effluent TP.

Fig. 11. Effluent TP models by RBFANN-GA and MLPANN-GA according to train and test data-sets.
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Analysis of the R2 and RMSE values showed that
Perm among single input variables, and Perm and
TMP among groups of two variables majorly affected
the effluent TN models. The most important variables
among groups of three variables were Perm, TMP,
and MLVSS, and the noteworthy variables among
groups of four variables were Perm, TMP, MLVSS,
and influent TN. Furthermore, Perm, TMP, MLVSS,
influent TN, and SRT among groups of five variables,
and Perm, TMP, MLVSS, influent TN, influent SRT,
and effluent COD between groups of six variables
majorly affected the variation of the effluent TN mod-
els (Table 7). The results showed high collaboration of
the RBFANN-GA and MLPANN-GA in the modeling
of effluent TN, the same as effluent BOD and COD
models. The analysis of the R2 and RMSE indicated
that the RBFANN-GA modeled effluent TN was more
accurate as compared with MLPANN-GA. Table 7

shows the importance order of each input variable
and the joint variables for the prediction of effluent
TN. The sensitivity analyses of input variables for
effluent TN models by RBFANN-GA and MLPANN-
GA indicated that the effluent TN is influenced by
Perm, TMP, MLVSS, influent TN, SRT, influent COD,
and influent BOD, respectively. The values of sensitiv-
ity to Perm, TMP, MLVSS, influent TN, SRT, influent
COD, and influent BOD for effluent TN were 61.2,
54.8, 41.5, 35.8, 26.3, 9.9, and 7.6%, respectively. This
study indicates that the Perm and TMP as well as
MLVSS significantly affect the effluent TN models.

For the effluent TP models, influent TP among sin-
gle input variables, and influent TP and MLSS among
groups of two variables were the most important
variables. The most correlated and effective combina-
tion among groups of three variables was combination
of influent TP, MLSS, and influent BOD, and the

Table 7
Effect of single and joint variables on the effluent TN models by RBFANN-GA and the MLPANN-GA

Input variable No.

TN models (RBFANN-GA) TN models (MLPANN-GA)

Importance order

R2 RMSE (mg l−1) R2 RMSE (mg l−1)

Train Test Train Test Train Test Train Test

1 0.399 0.455 0.332 0.697 0.393 0.434 0.345 0.751 7
2 0.385 0.483 0.277 0.588 0.381 0.476 0.275 0.653 6
3 0.388 0.777 0.305 0.218 0.372 0.761 0.318 0.221 5
4 0.449 0.751 0.248 0.201 0.437 0.742 0.255 0.212 4
5 0.485 0.742 0.211 0.185 0.483 0.733 0.215 0.204 3
6 0.682 0.792 0.147 0.132 0.633 0.765 0.153 0.139 1
7 0.622 0.781 0.153 0.138 0.615 0.764 0.158 0.142 2
6–1 0.321 0.301 0.429 0.445 0.302 0.282 0.405 0.426 6
6–2 0.324 0.315 0.421 0.438 0.311 0.313 0.421 0.459 5
6–3 0.518 0.541 0.357 0.339 0.489 0.512 0.366 0.357 4
6–4 0.615 0.587 0.214 0.237 0.606 0.532 0.226 0.248 3
6–5 0.675 0.699 0.172 0.164 0.666 0.671 0.178 0.169 2
6–7 0.685 0.756 0.144 0.141 0.657 0.694 0.159 0.151 1
6–7–1 0.686 0.692 0.181 0.176 0.669 0.654 0.186 0.189 5
6–7–2 0.699 0.701 0.178 0.171 0.674 0.668 0..182 0.179 4
6–7–3 0.726 0.743 0.152 0.161 0.712 0.724 0.166 0.163 2
6–7–4 0.725 0.744 0.152 0.169 0.708 0.722 0.169 0.168 3
6–7–5 0.745 0.762 0.138 0.135 0.744 0.749 0.147 0.142 1
6–7–5–1 0.803 0.785 0.144 0.158 0.783 0.758 0.152 0.162 4
6–7–5–2 0.817 0.788 0.142 0.154 0.793 0.767 0.149 0.163 3
6–7–5–3 0.862 0.837 0.124 0.127 0.855 0.829 0.131 0.139 1
6–7–5–4 0.861 0.835 0.122 0.132 0.848 0.819 0.137 0.146 2
6–7–5–3–1 0.849 0.892 0.135 0.129 0.827 0.864 0.135 0.139 3
6–7–5–3–2 0.888 0. 901 0.127 0.122 0.889 0.886 0.131 0.134 2
6–7–5–3–4 0.921 0.932 0.114 0.111 0.919 0.925 0.125 0.119 1
6–7–5–3–4–1 0.966 0.975 0.109 0.105 0.942 0.961 0.121 0.117 2
6–7–5–3–4–2 0.968 0.976 0.101 0.098 0.953 0.971 0.108 0.103 1
6–7–5–3–4–2–1 0.992 0.994 0.081 0.074 0.971 0.976 0.101 0.098 1

Note: The numbers 1–7 refers to input variables identified in Table 3.
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noteworthy combination among groups of four vari-
ables was combination of influent TP, MLSS, influent
BOD, and influent COD. Moreover, influent TP, MLSS,
influent BOD, influent COD, and SRT was the most
noticeable combination among groups of five vari-
ables. The influent TP, MLSS, influent BOD, influent
COD, SRT, and Perm between combinations of six
variables majorly affected the variation of the effluent
TP models (Table 8). The analysis of the R2 and RMSE
indicated that the RBFANN-GA modeled effluent TP
was more accurate as compared with MLPANN-GA.
Table 8 shows the importance order of each input
variable and the joint variables for the prediction of
effluent TP. The sensitivity analyses of input variables
for effluent TP models by RBFANN-GA and MLP-
ANN-GA showed that the effluent TP is influenced by
influent TP, MLSS, influent BOD, influent COD, SRT,

and Perm and TMP, respectively. The values of sensi-
tivity to influent TP, MLSS, influent BOD, influent
COD, SRT, and Perm and TMP for effluent TP were
57.4, 51.9, 44.6, 40.2, 19.7, 7.3, and 6.9%, respectively.
This study indicates that the influent TP, MLSS,
influent BOD, and influent COD majorly affect the
effluent TP models.

Figs. 12 and 13 show the effluent TN and effluent
TP models by RBFANN-GA and MLPANN-GA,
according to all experimental data-sets. The results
indicated a successful prediction and an almost perfect
match between the experimental and the predicted
values of effluent TN and effluent TP for both ANN
models. The results of effluent TN and effluent TP
modeling show the stronger generalization ability of
the RBFANN-GA compared with the MLPANN-GA.
Figs. 14 and 15 show the regression lines for all

Table 8
Effect of single and joint variables on the effluent TP models by RBFANN-GA and the MLPANN-GA

Input variable No.

TP models (RBFANN-GA) TP models (MLPANN-GA)

Importance order

R2 RMSE (mg l−1) R2 RMSE (mg l−1)

Train Test Train Test Train Test Train Test

1 0.515 0.595 0.743 0.651 0.487 0.512 0.856 0.734 3
2 0.511 0.585 0.752 0.659 0.494 0.523 0.871 0.757 4
3 0.682 0.725 0.591 0.558 0.646 0.698 0.612 0.583 1
4 0.428 0.482 0.841 0.755 0.421 0.446 0.894 0.813 5
5 0.526 0.613 0.711 0.628 0.503 0.566 0.749 0.704 2
6 0.421 0.458 0.849 0.768 0.411 0.405 0.899 0.908 6
7 0.408 0.414 0.857 0.791 0.386 0.374 0.931 0.943 7
3–1 0.579 0.687 0.697 0.614 0.543 0.628 0.742 0.690 2
3–2 0.567 0.666 0.728 0.637 0.526 0.568 0.847 0.719 3
3–4 0.562 0.655 0.737 0.645 0.534 0.581 0.862 0.742 4
3–5 0.751 0.812 0.579 0.546 0.698 0.775 0.606 0.571 1
3–6 0.471 0.541 0.824 0.738 0.455 0.495 0.885 0.797 5
3–7 0.463 0.513 0.832 0.751 0.444 0.451 0.891 0.894 6
3–5–1 0.845 0.891 0.506 0.412 0.808 0.866 0.521 0.511 1
3–5–2 0.776 0.797 0.602 0.521 0.689 0.782 0.624 0.604 2
3–5–4 0.618 0.666 0.661 0.562 0.609 0.635 0.771 0.661 3
3–5–6 0.613 0.702 0.669 0.567 0.618 0.649 0.784 0.681 5
3–5–7 0.514 0.578 0.748 0.649 0.526 0.553 0.805 0.732 6
3–5–1–2 0.941 0.922 0.306 0.302 0.915 0.906 0.327 0.322 1
3–5–1–4 0.901 0.893 0.319 0.365 0.877 0.819 0.385 0.367 2
3–5–1–6 0.894 0.878 0.323 0.369 0.889 0.837 0.392 0.379 3
3–5–1–7 0.749 0.723 0.362 0.423 0.758 0.714 0.402 0.407 4
3–5–1–2–4 0.984 0.975 0.235 0.245 0.966 0.962 0.304 0.317 1
3–5–1–2–6 0.963 0.946 0.245 0.254 0.935 0.927 0.385 0.331 2
3–5–1–2–7 0.956 0.931 0.258 0.267 0.928 0.917 0.392 0.347 3
3–5–1–2–4–6 0.989 0.981 0.185 0.201 0.971 0.974 0.210 0.211 1
3–5–1–2–4–7 0.968 0.962 0.193 0.208 0.949 0.943 0.228 0.224 2
3–5–1–2–4–6–7 0.998 0.997 0.124 0.129 0.988 0.986 0.136 0.139 1

Note: The numbers 1–7 refers to input variables identified in Table 3.
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Fig. 12. Effluent TN models by RBFANN-GA and
MLPANN-GA according to all data-set.

Fig. 13. Effluent TP models by RBFANN-GA and
MLPANN-GA according to all data-set.

Fig. 14. Regression plots and residuals of RBFANN-GA and MLPANN-GA for the prediction of effluent TN.
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data-sets based on the RBFANN-GA and MLPANN-
GA models for the effluent TN and effluent TP values.
The values of R2 based on the RBFANN-GA and
MLPANN-GA models for effluent TN models were
0.994 and 0.969, and for effluent TP models were 0.999
and 0.987, respectively. Furthermore, to measure the
predictive capability of ANN models, a set of data

was used in the effluent TN and effluent TP
simulation process [39]. The RMSE values for the train
and test models by RBFANN-GA were 0.081 and
0.074 mg−1 for the effluent TN, and were 0.124 and
0.129 mg−1 for the effluent TP, respectively. The RMSE
values for the train and test models by MLPANN-GA
were 0.101 and 0.098 mg−1 for the effluent TN, and

Fig. 15. Regression plots and residuals of RBFANN-GA and MLPANN-GA for the prediction of effluent TP.

Table 9
Comparison of RBFANN and MLPANN with and without applying GA for the TN and TP models

Model
R2 RMSE (mg l−1)

Percentage of error (%) Rank of model (Accuracy)
All Train Test All Train Test

Total nitrogen (TN) models
RBFANN 0.912 0.898 0.924 0.131 0.159 0.128 9 3
RBFANN-GA 0.995 0.992 0.994 0.072 0.081 0.074 4 1
MLPANN 0.864 0.853 0.784 0.161 0.167 0.184 10 4
MLPANN-GA 0.969 0.971 0.976 0.105 0.101 0.098 6 2
Total phosphorus (TP) models
RBFANN 0.938 0.924 0.919 0.201 0.224 0.237 7 3
RBFANN-GA 0.999 0.998 0.997 0.121 0.124 0.129 3 1
MLPANN 0.928 0.921 0.893 0.233 0.247 0.325 11 4
MLPANN-GA 0.991 0.988 0.986 0.133 0.136 0.139 4 2
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were 0.136 and 0.139 mg−1 for the effluent TP,
respectively. The mean average error by RBFANN-GA
and MLPANN-GA models were 4 and 6% of input
values in the prediction of effluent TN, and were 3
and 4% of input values in the prediction of effluent
TP, respectively.

Figs. 14 and 15 show the residuals of effluent TN
and effluent TP models attained by the RBFANN-GA
and the MLPANN-GA for all data-set versus the fre-
quency of the data. The approximately normal distri-
bution of residuals produced by the RBFANN-GA and
the MLPANN-GA models has led to a normal distri-
bution, which is illustrated by a specific bell-shaped
curve [40]. The specific bell-shaped curve demon-
strates that our results are symmetrical and their axis
round around zero for all data-sets. The effect of
applying GA on the RBFANN and the MLPANN in
the prediction of effluent TN and effluent TP has been
presented in Table 9. The results indicated that the
precision and accuracy of all effluent TN and effluent
TP models increased when GA was applied to the
ANN models. The results of the RMSE and R2 for
effluent TN and effluent TP models indicated that the
RBFANN-GA is the most precise model with a mean
average error about 3 to 4%.

4. Conclusion

Two hybrid artificial neural network–genetic algo-
rithm models were developed to accurately predict
the effluent BOD, COD, TN, and TP in a SMBR
with simultaneous upward and downward aeration
system. The input variables of the networks were
influent BOD, influent COD, influent TN or influent
TP, SRT, MLSS, membrane permeability, and TMP.
Training procedures of the effluent BOD, COD, TN,
and TP were successful for both the MLPANN-GA
and RBFANN-GA models. The training and testing
models showed an almost perfect match between
the experimental and predicted values. Based upon
the statistical analysis, results indicated that there is
a very little difference between the predicted and
experimental values of the effluent BOD, COD, TN,
and TP. The models showed low RMSE values and
high R2 values very close to one, demonstrating
high accuracy of these models to predict output
variables. The hyperbolic tangent sigmoid transfer
function (tansig) at the hidden layer and linear
transfer function (purelin) at the output layer were
the optimal functions. The LM had smaller RMSE
values compared with other backpropagation algo-

rithms. So, the LM was considered the training
algorithm in this research. The optimum models for
the prediction of the effluent BOD, COD, TN, and
TP were obtained with the hidden layer consisting
of nine neurons.

The sensitivity analyses of input variables for the
effluent BOD and COD models by RBFANN-GA and
MLPANN-GA indicated that the effluent BOD and
COD are influenced by Perm, TMP, MLVSS, influent
COD, and influent BOD, SRT, and TN, respectively.
The values of sensitivity to Perm, TMP, MLVSS,
influent COD, influent BOD, SRT, and influent TN
for effluent BOD were 68.1, 66.3, 54.2, 32.5, 24.9, 12.4,
and 6.4%, respectively. The values of sensitivity to
mentioned variables for effluent COD were 69.7, 67.5,
55.1, 31.9, 24.7, 13.5, and 7.8%, respectively. This
study showed that the Perm and TMP as well as
MLVSS significantly affect the effluent BOD and
COD models. The sensitivity analyses of input vari-
ables for effluent TN models by RBFANN-GA and
MLPANN-GA indicated that the effluent TN is influ-
enced by Perm, TMP, MLVSS, influent TN, SRT,
influent COD, and influent BOD, respectively. The
values of sensitivity to Perm, TMP, MLVSS, influent
TN, SRT, influent COD, and influent BOD for efflu-
ent TN were 61.2, 54.8, 41.5, 35.8, 26.3, 9.9, and 7.6%,
respectively. This study indicated that the Perm and
TMP as well as MLVSS significantly affect the efflu-
ent TN models. The results showed that the effluent
TP is influenced by influent TP, MLSS, influent BOD,
influent COD, SRT, Perm, and TMP, respectively.
The values of sensitivity to influent TP, MLSS, influ-
ent BOD, influent COD, SRT, Perm, and TMP for
effluent TP were 57.4, 51.9, 44.6, 40.2, 19.7, 7.3, and
6.9%, respectively. This study indicates that the influ-
ent TP, MLSS, influent BOD, and influent COD
majorly affect the effluent TP models.

It became clear that the models based on the GA
were much better than those models without GA
from the viewpoint of the achievement of accurate
prediction of the effluent BOD, COD, TN, and TP.
The results of this study indicated that the accuracy
of all ANN models increases when GA is applied to
neural networks. The mean average error for hybrid
models varied from 3 to 8%. The results of this study
illustrate an approximately normal distribution of
residuals produced by the RBFANN-GA and the
MLPANN-GA models. A normal distribution of
variation results in a Gaussian curve, which demon-
strates that our results are symmetrical and their axis
round around zero.
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