& Desalination and Water Treatment 57 (2016) 17195-17205

¢ www.deswater.com August
(
Taylor & Francis
doi: 10.1080/19443994.2015.1085909 Taylor & Francis Group

Prediction of sludge volume index bulking using image analysis and neural
network at a full-scale activated sludge plant

Halime Boztoprak®*, Yiiksel Ozbay®, Diinyamin Gii¢lii, Murat Kiigiikhemek*

Akseki Vocational School Computer Program, Akdeniz University, Antalya, Turkey, Tel. +90 5068270597, Fax: +90 2426781355;
email: hboztoprak@akdeniz.edu.tr

"Department of Electrical Electronics Engineering, Selcuk University, Campus, 42031 Konya, Turkey, Tel. +90 3322232048;
email: ybay@selcuk.edu.tr

“Department of Environmental Engineering, Selcuk University, Campus, 42031 Konya, Turkey, Tel. +90 3322232069,

email: bguclu@selcuk.edu.tr

“Water and Sewarage Administration General Directorate, KOSKI, Konya, Turkey, Tel. +90 5052162321;

email: mkucukhemek@koski.gov.tr

Received 13 November 2014; Accepted 13 August 2015

ABSTRACT

Sludge volume index parameter should be monitored daily for the performance of wastewa-
ter treatment plants. It was aimed to estimate this parameter using image processing and
artificial intelligence techniques for full-scale wastewater treatment plant. The activated
sludge samples were collected from the aeration tank of the activated sludge process in
Konya Domestic Wastewater Treatment Plant. Sludge characteristics and settling properties
were observed microscopically via the measurements of flocs and filaments. The 49 images
per slide were taken by an image-analysis system developed for automated image acquisi-
tion. A total of 120 samples were examined over a period of year. The floc and filament
structures were analyzed using Cellular Neural Networks (CNN). Iteration value of the
CNN was modified according to the image. Then, a number of morphological operations
were applied for an accurate identification of the floc and filaments separately. Textural,
shape, and statistical approaches were utilized for creating a set of data for each sample.
After preparing the training and test data by shuffling the data randomly, a fivefold
cross-validation method was applied. And, these training and test data were applied to an
artificial neural network. The weights of the neural network were trained using the
Levenberg-Marquardt, Genetic, and Artificial Bee Colony algorithms.

Keywords: Artificial bee colony algorithm; Artificial neural network; Genetic algorithm;
Sludge bulking; Sludge volume index; Wastewater treatment

1. Introduction phenomena. The biological clarifier is one of the most
important and critical steps of the activated sludge
process. The main objectives of this are to provide good
quality effluent and a well-settled and thickened
activated sludge [1]. Sludge characterization is crucial

Activated sludge flocculation is a very complex pro-
cess that involves physical, chemical, and biological
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for an efficient operation of the activated sludge process
[2].

Image processing techniques are used for the
segmentation of flocs and filaments, an estimation of
biomass concentration [3,4], and an activated Sludge
volume index (SVI) [5,6], as well as the prediction of
bulking events [7]. A range of 30-200 images obtained
from a slide were taken through systematic examina-
tion [5-8]. Morphological process at image analysis is
generally used as a method for the segmentation of
flocs and filaments. The image analysis method has
been used to find the correlations between image
analysis information ability and sludge settling using
partial least squares [9]. A breakthrough about charac-
terization and identification of the most common
sludge abnormalities can be seen in several studies
[2-10]. Image analysis is used for the examination of
the size and shape of activated sludge flocs and to
quantify them [11]. The published methods to predict
the SVI leads to failure compared to other types of
disturbances, since the biomass structure is different
for each disturbance [12].

Nisar et al. reported that the structure and the
amount of activated sludge flocs were helpful in the
prediction of abnormal events in wastewater treatment
plants. In their study, they segmented the images
using edge detection technique. Later, they used mor-
phological operations to identify relevant areas [13].
For differentiation of the flocs, Amaral, and Ferreirra
have improved the image first by normalization and
histogram equalization and then they softened the
image by the wiener filter [14]. Kilander et al. per-
formed a thresholding process using histogram data
[15]. Heine et al. used the edge detection technique
[16]. And, Perez et al. applied background removal,
histogram equalization, median filtering, and morpho-
logical operations in their study [8].

Image analysis is used for monitoring of a
wastewater treatment plant in order to eliminate the
subjective, tedious, and rather tiring human analysis.
In general, methods used for flocs and filament seg-
mentation are the morphological processes, and the
top-hat and bot-hat transforms. Both statistical and
machine learning methods are used for defect analysis
and estimation [9-12]. An efficient automatic micro-
scopic image analysis with potential relevancy can be
used as an early warning system for the excessive
growth of the filamentous population in aeration
tanks. Manual methods used for everyday operation
of wastewater treatment plants are laborious and time
consuming [17].

The SVI measures the settling characteristics of the
sludge. Sludge bulking is a term to define the exces-
sive growth of filamentous bacteria, this bulking is
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often also used for non-filamentous poor settling. As a
general guideline, bulking is said to occur when the
SVI is higher than 150 mL/g, regardless of its cause
[17,18]. A low SVI generally indicates well-flocculated
sludge with good settling properties. The SVI has been
shown to be related to the floc structure in activated
sludge [12]. The evolution of floc morphology was
examined during variable-speed and constant-speed
flocculation using image analysis [19]. In [20], floccula-
tion is monitored by both microscopic image analysis
and SVI. It is indicated that microscopic image analy-
sis proves to be a powerful monitoring tool to evalu-
ate the bioflocculation condition, while SVI is unable
to correctly monitor its bioflocculation condition.

So far, most studies have used either the SVI or the
diluted sludge volume index (DSVI, where all samples
are diluted with deionized water to make them same in
each analysis) measurements to describe the settleabil-
ity of activated sludge. Some studies [2,7,9,10,13,21]
have reported that in the case of filamentous or zoogleal
bulking, the SVI or DSVI values were higher. However,
unsatisfactory settling characteristics caused by either
pinpoint floc formation or dispersed growth manifest
themselves differently than do filamentous bulking or
zoogleal bulking. In those cases, flocs can settle quickly,
causing a lower or normal the SVI value, but small
particles are not filtered out by the settling flocs and
thus the actual purification result is poor [10,21].

Artificial neural network (ANN) techniques were
utilized in various areas such as industry, safety, envi-
ronment, medicine, along with image processing.
These techniques are used for the suppression of noise
[22-24], and especially for the estimation of the envi-
ronmental data in treatment plants. Environmental
data of the plants is used as input to estimate the out-
put environmental data [25-27]. Reliable and system-
atic assessment methods are needed for controlling
treatment plants. The data obtained on the treatment
processes in the past were often modeled using artifi-
cial intelligence methods (neural networks, adaptive
network-based fuzzy inference systems) and multiple
statistical methods (principal component analysis and
multiple linear regression).

Artificial Bee Colony (ABC) algorithm is used in
various areas such as data mining applications, wire-
less sensor networks, image processing applications,
and optimization problems [28,29] since it is efficient
and stable in training ANNs [30]. The algorithm was
proposed by Karaboga for optimizing numerical prob-
lems [31]. Karaboga and Akay have used ABC for
training ANN in signal processing applications, and
compared the performance of the algorithm with dif-
ferential evolution (DG) and particle swarm optimiza-
tion (PSO) algorithms [32]. Karaboga and Bastiirk have
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also compared the performance of ABC with DG and
PSO for multidimensional numerical problems [33].
Performance of ABC had also been compared with
genetic algorithm (GA) and PSO [34]. Karaboga et al.
used ABC and ANN together to determine transfer
function, architectural structure, and synaptic weights
of each neuron [35]. ABC algorithms have been tested
on benchmark classification problems, and the results
have been compared with traditional neural network
and population-based algorithms. In these compar-
isons, the ABC algorithm achieved good results [36].

It is seen in the recent literature that, image process-
ing techniques are used increasingly in the estimation
of SVI for full-scale wastewater treatment plant. In [17],
a full-scale wastewater treatment plant was monitored
over three months. Most flocculation studies have only
been performed in the laboratory or on a pilot scale
[7,12]. The results obtained in the experiments in lab-
oratory scale will not give the same results for a full-
scale plant. Thus, there is a need for full-scale studies.
The evolution of floc morphology from poor floccula-
tion to good flocculation in a full-scale wastewater
treatment plant has not yet been studied [21]. The num-
ber of image analysis studies performed for biomass
and sludge characterization in wastewater treatment is
ever increasing, particularly in activated sludge sys-
tems. Determining the characteristics of microbial
communities is still a challenge despite the various
microscopy techniques applied. The sludge settling
ability is considered as one of the main problems in
activated sludge systems and is commonly measured
by the SVI. The bulking conditions are identified with
the SVI value. The sludge settleability strongly relates
to the structure and properties of the activated sludge
flocs. The aim of the proposed approach is to determine
segmentation of floc images, having different charac-
teristics, and to develop a model for predicting SVI con-
centrations and monitor the wastewater treatment plant
performance. The SVI was estimated using the data-sets
obtained through the image analysis performed by neu-
ral network for full-scale wastewater treatment plant.

2. Material and methods

Konya Wastewater Treatment Plant was designed
to treat all domestic and pretreated industrial
wastewater of the province of Konya, Turkey, based
on a biological process. Activated sludge samples
were taken from the aeration tank of the activated
sludge process in the plant. The plant was observed
on a regular basis. The aim of the proposed approach
is to determine segmentation of floc images, having
different characteristics, and to develop a model for
predicting the SVI concentrations and monitor the
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wastewater treatment plant performance. The SVI was
estimated using the data-sets obtained through the
image analysis performed by neural network for full-
scale wastewater treatment plant. The main steps of
the system development are image acquisition, image
analysis, segmentation, and prediction (Fig. 1).

2.1. Artificial neural network

ANNSs are a technique for the human brain’s prob-
lem-solving process. ANNs are a highly interconnected
network of many simple processors. These simple pro-
cessors, named artificial neurons, are organized into an
input layer, a hidden layer (or layers) and an output
layer. The neurons are connected by their weights. In
this paper, the nodes of input layer and output layer
are 33 and 1, respectively. Each neuron in the input
layer represents a single input parameter. The number
of hidden nodes is determined via experimentally. The
neuron of the last layer represents the ANN output.
The ANN can be evaluated as minimization of an error
function in ANN training. Error function calculates the
difference between the actual output of an ANN and a
desired output. The mean squares of the errors are
used as a performance function with its goal set to
zero. The main steps are as following;:

(1) Initialization: generate random weight and
biases values in a specified range [-1, 1] and
specified initial number of hidden layer sizes.

ﬂPrcparation of samples |

Screening of samples H Software-Hardware

Image Acquisition

B

s Feature
28 Extraction
E § | Segmentation

<5 Feature
;.ng Extraction

Prediction

ﬁ Sludge volume index (SVI)

Result

Fig. 1. Phases of the system development.
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(2) Presentation of input and desired outputs:
present the input vector x(1), x(2), ..., x(N) and
corresponding desired response d(1), d(2), ..., d
(N), N is the number of training sets.

(3) Calculation of actual outputs:

Num-1
Y= Z wgw*l)x;Mfl) + bngl) , 1=1,...,Npm_1
=1

¢))
where y1, ¥, ..., Ynm are the output signals.

(4) Adaptation of weights (w;;) and biases (b;):

vy Y (n) = pxj(n).o, " (n)
Vb (n) = .6, (n) b)

where

¢'(net! V)di —y], 1=M

=1y —
o ~(n) = ¢ (netl(lfl)) Zwkiél((l)(n), 1<I<M ©)
k—

in which x;(n) = output of node j at iteration n, I is
layer, k is the number of output nodes of neural
network, M is output layer, and ¢ is activation
function. The learning rate is represented by u. After
completing the training procedure, the weights of
multilayer perceptron network are saved and
ready for use. The results of the network are
compared with the actual observation results and
the network error is calculated. The training process
continues until this error reaches an acceptable
value [37].

2.2. Genetic algorithm

GA is a part of parallel search heuristics originated
by the biological process of natural selection and
evolution [38]. In GA optimization, solutions are
coded into chromosomes in order to construct a
population being evolved through generations. Each
chromosome represents the weight vector of the
network. At each generation, crossover operator is
used, which is a process of taking more than one
parent solutions and producing a child solution from
them. Then, mutation and perturbation occurs for
some of the individuals. After that, they are gathered
to select new individuals for next generation. This

H. Boztoprak et al. | Desalination and Water Treatment 57 (2016) 17195-17205

procedure is repeated until the stopping criterion is
satisfied [39].

2.3. ABC algorithm

ABC algorithm is an optimization algorithm based
on a particular intelligent behavior of honey bee
swarms. The algorithm represents solutions in the
given multidimensional search space as food sources
(nectar), and maintains a population of three types of
bee (employed, onlooker, and scout) to search for the
best food source. A bee waiting on the dance area for
making decision to choose a food source is called
onlooker and one going to the food source visited by
it before is named employed bee. The other kind of
bee is scout bee that carries out random search for
discovering new sources [40].

2.4. SVI prediction
2.4.1. Image acquisition

The samples of activated sludge were collected
from the aeration basins of the plant. Motic AE21
inverted microscope present in the laboratory was
used for taking the images. The microscope was
equipped with a visualization system that consists of
a moticam microscope camera (Moticam 2500) and a
motorized XY scanning stage (SMTF). An overview of
the system equipment is shown in Fig. 2.

A properly prepared slide was placed on the
microscope’s stage for image acquisition. Each slide
was scanned from top left corner to bottom right one
systematically. The images were acquired at
1,288 x 966 pixels through an interface designed, at
40x magnifications.

s+ wme USB camera

{ - "
-

Motorized Stage

Fig. 2. An overview of the system hardware.
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2.4.2. Image analysis and segmentation

The 49 (7 x 7) images per slide were taken by an
image-analysis system developed for automated image
acquisition in order to determine the floc size, shape,
and structural parameters. As shown in Fig. 3, all the
images were processed sequentially and the results
obtained were recorded in Excel.

The methods generally used in the literature for
the segmentation of flocs are basic image processing
techniques such as thresholding, edge detection tech-

( Image Acquisition )

/ i=1 i«f,:120i+—1L >
v

< i=1i<=49 i++ <

v

Pre-processes (gray-level
transformation, filtering)

v

Wavelet Transform

v
Spatial Frequency

v

Number of iterations

v
CNN

v
Morphological operations

v v

Floc Filament
v v

Feature Extraction

v

Saving to Excel

v

Prediction

Fig. 3. Steps performed in processing the images.
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niques, and morphological-based operations. In many
studies, a preprocessing stage was applied, and then
the objects were segmented using a predetermined
threshold value.

Morphological characterization of flocs and fila-
ments play a crucial role in evaluating the state of the
activated sludge [11]. Therefore, segmentation stage is
important and there are many studies in this regard.
In this study, cellular neural networks (CNN) was uti-
lized and the iteration value of the CNN was modified
according to the image. Wavelet method was used to
determine the Iteration value. Haar wavelet filter was
used to perform second level of decomposition. The
iteration value was calculated using the spatial fre-
quency of subbands obtained as a result of this
decomposition (the details of this value’s calculation is
available in [41]).

In determining the abnormalities in the activated
sludge process, the filament and floc structures pre-
sent in the images of the activated sludge images must
be examined separately. The structures can be inter-
twined in the images. Morphological operations were
applied after the CNN process in order to detect
potential flocs and filaments as accurate as possible.
There are free filaments and filaments combined with
flocs in the images. The free filaments are the fila-
ments or filaments portions outside the aggregates,
either attached or dispersed in the bulk. Certain
operations were applied to distinguish filaments com-
bined with flocs, such as elimination of the small pix-
els, filling, opening, and dilating. Aggregates were
pruned to eliminate filament branches connected to
the flocs. Then the textural characteristics of each floc
were determined. All the branches of the filaments
inferior to very small areas were removed. In the seg-
mentation of the filaments, the iteration value calcu-
lated in CNN was increased by 10% in order to
identify small and indistinct ones. Then, morphologi-
cal operations were applied.

2.4.3. Structure and training data

Experimental data required for this study has been
collected from the activated sludge samples. Creation
of the data-set through the images taken from a sam-
ple is shown in Fig. 4.

The total values, means, and standard deviations
of the individual features derived from the images
were calculated. The features shown in Table 1 were
calculated. In addition to this table, a data-set was
created using total filament length, total floc area, total
area, features in the Table 1, and ratio of each
parameters. Thus, 33 featured data-set were created
for each sample.
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Fig. 4. The data obtained from a sample.

Table 1
The parameters calculated from the activated sludge
images

Form factor 4 x pi x Area/ Perimeter?

Hole Filed area/Area

Aspect ratio AR =1 + 4 x (length/width —1)/pi
Roundness 4 x Area/(pi x length?)

Solidity Area/Convex area

Extent Area/Bounding area

Equivalent diameter

De = /4 Area

Mean Og = 2%)(8 - g)zp(g)
4=
L-1
Standard deviation §=>8P(g) =22 I<;AC)
§=0
L-1
Entropy Zo P(g)log,[P(g)]
o=
N‘271 NS NS
Contrast > TZZ{Z ZP(L])}v li =l
n=0 i=1j=1
Ng—1Ng-1
Do D i) —sany
Correlation %
NX NK 2
Energy Z;le(l,])
i=1j=
N&' NS’
Homogeneity > > (i)
i=1j= D

The data-sets collected from the images were used
to predict the SVI. In total, 33 input parameters were
used. The data-set size was 33 segments x 120 sam-
ples. The ANN input parameters were converted into
a vector that used the input of ANN. The vector was
normalized between -1 and 1. This process was

H. Boztoprak et al. | Desalination and Water Treatment 57 (2016) 17195-17205

achieved by determining the maximum and minimum
values of each variable over the whole data period
and calculating normalized variables.

The performance of the proposed model was
evaluated by calculating the mean square error (MSE)
and the correlation coefficient between the modeled
output and measurements of both the training and
testing data-sets. MSE is the average of the squares of
the difference between each output processing element
and the desired output using the following formula:

N (v, — 1)
MSE:Z% @)

i=1

where x; and y; are the measured and predicted
values, respectively. N is the total number of model
outputs.

The test results satisfying the minimum errors
were subjected to testing of the correlation coefficient,
1, as given in Eq. (3).

L SE-NE-) -
VI -2y - )

where ¥ and y are the average of the measured and
predicted values, respectively. The range of r is from
-1to1.

The network architecture chosen was 33:10:1. The
number of hidden nodes was determined empirically.
The ANN network model used is shown in Fig. 5.

The neurons are connected by their weights. We
calculate the total weight as following;:

Total weight = (NI+1) x NH+ (H+1) x NO 6)

where NI, NH, and NO are the number of input layer,
hidden layer, and output layer processor, respectively
[42].

For the 33:10:1 architecture, the total number of
weights is calculated by Eq. (7). We calculate the total
weight as 351. The weights of ANN were trained
using Levenberg-Marquardt (LM-ANN), genetic
(GA-ANN), and ABC-ANN algorithms. The same neu-
ral network architecture was used for all algorithms in
order to see their relative strength.

GA and ABC algorithms are among the optimiza-
tion techniques, which have been used in many stud-
ies to train ANN. It has been reported that ABC has
provided improvements in multidimensional problems
compared to the results obtained by PSO and GA [43].
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Fig. 5. The ANN model used to estimate the SVI.

Kurban and Besdok have compared performances of
GA, kalman filter algorithm and gradient descent
algorithm in training radial neural networks and
ANN by ABC, and found that ABC was more success-
ful in ANN training [44]. They emphasized its supe-
rior performance in ANN training and lack of being
stuck in local minima [45]. They have also stressed
out that ABC has many superior aspects [46], leading
to effective results [47]. And, they suggested use of
ABC by revealing that it produces better results than
conventional methods [48].

GAs are commonly used to optimize neural
networks. Using GA in neural network training means
that the weights of NN are determined by GA. Each
chromosome represents the weight vector of the
network. Here, the dimension of vector to be
optimized was 351. In the numerical analysis, the GA
control parameters were as follows: population
size was N =20; maximum generation number was
1,000; recombination probability was 0.1; crossover
probability was 0.8; and, mutation probability was
0.02.

In the ABC algorithm, the bee was encoded to
represent the network connection weights. Initially,
the user defined size of employee bees was randomly
initialized and initial weights were assigned. For each
employee bee, the fitness was computed using MSE,
which is the difference between the expected output
and actual output of network. The probabilities of
each of the employer bee were computed using fitness
of the employer bee, which was used to initialize the
onlooker bee. The fitness of each onlooker bee was
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computed. When the performance of bees didn’t indi-
cate an improvement for some user-specified time,
then the scout bee was abandoned and replaced by
the randomly initialized employee bee. This process
was repeated for user-specified number of iterations.
The best bee represents the final connection weights.

As for the modeling steps (training and testing) to
be applied in ANN, K-fold cross-validation was used
in our applications. The K-fold cross-validation is
similar to random sub-sampling. Hence, K-fold parti-
tion of the data-set was created. For each of K experi-
ments, K-1-folds were used for training and a
different fold was used for testing. The advantage of
K-fold cross-validation is that all the examples in the
data-set are eventually used for both training and test-
ing [49]. The data were divided into training and test
subsets. Of these data, 80% was used for training, and
20% was used for the test set.

3. Results and discussion

The plant was followed for a year, and a total of
120 samples were examined. The SVI values were
measured in the range of 70-211 ml/g in plant during
this observation period. The sludge characteristics and
settling properties were observed microscopically via
the measurements of flocs and filaments. The designed
interface was used at fixed intervals along the xy-axes
to produce a single stack of 49 images for a given field
of slide. Schematic diagram of the processes applied
for the segmentation of flocs and filaments is shown
in Fig. 6.
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Fig. 6. The segmentation of flocs and filaments.

The structure of the flocs is of great importance in
solid-liquid separation. Therefore, textural, shape, and
statistical properties are utilized in determining the
floc properties. The steps in Fig. 6 was taken for
obtaining these properties. The edge transitions were
ignored in order to obtain the textural properties of
the flocs in a more accurate manner. These edge
transitions were not included in neither floc nor
filament properties.

The amount of free filaments in the sludge is
important for the sludge properties. Therefore, the free
filaments or the filaments touching flocs were sepa-
rated from the image. Filamentous bulking events
occur upon the excessive growth of filaments both
inside and outside the flocs.

Sludge bulking is the most complex one among the
settling problems occurring in the biological clarifiers.
In general, the bulking is caused by excessive growth
of filamentous bacteria. The term bulking sludge is
also used for non-filamentous sludge with poor set-
tling properties sometimes. It is important to know
the relationship between floc size and its structural
properties that affect SVI, since it can be used for pro-
cess optimization.

Accordingly, the floc and filament structures were
separated in the study. Both morphological and textu-
ral properties of the structures were estimated. The
data-sets collected from the images were used for
predicting the SVI. The data-set size was 33
segments x 120 samples. The neural network structure
have one hidden layer. The hidden layer have 10
neurons. A tansig activation function was used in the

Total number of examples

) (120)

Exam?lii (24]\|* ‘ | Experiment 1
[ T ] | Experiment2
| | | | Experiment 3
| [ | | Experiments
| | | Experiment 5

Fig. 7. Learning schemes for fivefold cross-validation
methods.
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Table 2
Comparison of learning algorithms

Training Testing
Learning Algorithms  r MSE T MSE
LM-ANN 0.997  0.00152  0.896  0.104
GA-ANN 0973  0.04518  0.902  0.072
ABC-ANN 0.969  0.05292 0915  0.094

hidden layer. A pure-linear activation function was
used in the output layer. And, the number of weights
to be trained was 351 in total. The weights of the neu-
ral network were trained by the LM, genetic and ABC
algorithms using fivefold cross-validation.

The training and test data were obtained by ran-
domly shuffling the data. And, these training and test
data were applied to the ANN. Of the data, 1 in 5 was
allocated for testing (24 data), and the remaining part
(96 data) was used for training data. Fivefold cross-
validation method was applied (Fig. 7). All these
operations were repeated five times, and the accuracy
results obtained in each run. Thus, an average accu-
racy was obtained. This procedure was performed for
all learning algorithms made in the same way.

The performance of the methods was measured
using correlation coefficient (r) and MSE function. The
average MSE and r values obtained for training and
test data-sets are shown in Table 2.

The best correlation value (0.915) between the
estimation results and experimental the SVI parameter
was found by the ABC-ANN method. The results
showed that image processing and ANNs can be suc-
cessfully applied for SVI estimation. The results indi-
cated that the approach may have implementation
potential for simulation, prediction, and bulking con-
trol of wastewater treatment plants. Automated image
capturing and systematic scanning of samples are
important processes for many applications. This
would be helpful in everyday operation of a wastewa-
ter treatment plant substantially. The SVI was esti-
mated using the data-sets obtained through the image
analysis performed by neural network for full-scale
wastewater treatment plant.

4. Conclusion

The estimation of the SVI value, which is an
important parameter for the costly wastewater treat-
ment plants, using image processing and artificial
intelligence techniques will enable to monitor the
problems related to rapid growth of filaments and lack
of sedimentation in the sludge. The reason for the lack
sedimentation cannot be determined by only using the
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SVI value. The filament and floc structures present in
the images of the activated sludge images must be
examined as necessary. By this method, the SVI value
will be better evaluated thanks to the inclusion of
textural, morphological, and statistical data of flocs
and filaments. And, this will facilitate the operations
of the workers, and will provide effective information
regarding the negative effects and losses in the plants.
The proposed system performs the long-lasting pro-
cesses automatically, without requiring any user input.
Conventional methods are rather time-consuming and
costly, considering the repetition requirement of any
erroneous experiment. Hence, the proposed method
will minimize the need for experimental work.

In the activated sludge images, usually morpho-
logical and statistical properties were analyzed. In this
study, textural properties of the flocs were also used.

ABC and GAs used for training ANN weights in
many areas were also applied to the images taken
from the wastewater treatment plant.

In subsequent studies, instead of images, videos
can be captured in subsequent studies, and move-
ments of protozoa and micro-organisms can be moni-
tored in real time during this video capturing process.

In environmental engineering, the evaluation and
modeling of the treatment processes by image process-
ing methods of treatment processes will probably
bring new horizons in the monitoring and control
approaches. The results of such study will be benefi-
cial both in producing economically feasible solutions
and ease of operation in the operation of the wastewa-
ter treatment plants.
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