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ABSTRACT

In this paper, CuO–NiO nanocomposite was synthesized and used to remove cationic dyes
from wastewater. The scanning electron microscopy, Fourier transform infrared
spectroscopy, and X-ray diffraction were used to characterize the nanocomposite. Basic Red
18 (BR18) and Basic Blue 41 (BB41) were used as cationic dyes. Artificial neural network
(ANN) model was used to predict the efficiency of dye removal. The effect of adsorbent
dosage and dye concentration on dye removal was evaluated. The studied operating
variables were used as the input to the constructed neural network to predict the dye
removal at any time as the output or the target. The backpropagation neural network with
Levenberg–Marquardt training algorithm was used to predict adsorption efficiency with a
tangent sigmoid transfer function (tansig) at hidden layer and a linear transfer function
(purelin) at output layer. The results showed the dye adsorption kinetics followed pseudo-
second-order kinetics model. Dye removal isotherm was fitted with Temkin and Freundlich
models for BB41 and BR18, respectively. The linear regression between the network outputs
and the corresponding targets were proven to be satisfactory with a correlation coefficient. In
addition, ANN modeling could effectively predict and simulate the behavior of the process.

Keywords: Synthesis; CuO–NiO nanocomposite; Dye removal modeling; Artificial neural
network; Wastewater

1. Introduction

Dyes are organic pollutants originating from many
industries, such as textile, rubber, paper, leather, plas-
tics, cosmetics, and food [1–14]. It is recognized that
public perception of water quality is greatly influenced
by the color. The presence of very small amounts of

dyes in water is highly visible and undesirable [6,7]. In
addition, dye in water interferes with light penetration
and thus reduces the photosynthesis in aquatic plants
which destroys aquatic ecosystems [6,8–10]. Wastewa-
ter containing dyes is difficult to treat because most
dyes are resistant to biological degradation and oxida-
tion [6,12–14]. Various methods for dye contaminated
waters with varying degrees of advantage have been
applied, such as coagulation/flocculation, chemical
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oxidation, ion exchange, irradiation, membrane
filtration, sedimentation, solvent extraction, reverse
osmosis, biological treatment, photocatalytic degrada-
tion [15–20], electrochemical treatment, and adsorption
[4,9]. Among these methods, the adsorption process has
proved to be a more powerful technique due to its sim-
plicity, low cost, ease of operation, flexibility, minimum
sludge production, and insensitivity to specific toxic
substances [10,21,22]. For this purpose, many adsor-
bents including activated carbon, synthetic polymer,
etc. were investigated, but they have some problems,
such as high cost and time-consuming method for syn-
thesis [10]. Thus, the synthesis of an adsorbent with low
cost and good capacity for adsorption in a short time is
preferred.

Artificial neural networks (ANNs) have the ability
of learning, simulation, and prediction of data. The
inspiration of using neural network came from the
biology of human brain. ANNs are now commonly
used in many research areas of science and engineer-
ing and represent a set of methods that may be useful
in predicting water quality using water treatment
parameters. Unlike traditional statistical and differen-
tial equation approaches, ANNs are considered to be
a powerful data modeling tool, as it can capture and
implicitly represent complex relationships with many
variables, such as the input/output variables. The
neural networks are able to represent both linear and
nonlinear relationships and are ingenious to learn the
relationships directly from data used for training the
network. In addition, ANNs do not require the mathe-
matical description of the phenomena involved in the
process. The network consists of numerous individual
processing units called neurons which are commonly
interconnected in a variety of structures. The strength
of these interconnections is determined by the weight
associated with neurons. The multilayer feed-forward
net is a parallel interconnected structure consisting of
input layer and includes independent variables, num-
ber of hidden layers, and output layer [23–41].

A literature review showed that ANN modeling of
dye removal using CuO–NiO nanocomposite as an
adsorbent was not studied. In this paper, a simple and
low-cost procedure was reported for producing CuO–
NiO nanocomposite as an inorganic adsorbent. The
characteristics of the nanocomposite were studied
using scanning electron microscopy (SEM), Fourier
transform infrared (FTIR) spectroscopy and X-ray
diffraction (XRD). Basic Red 18 (BR18) and Basic Blue
41 (BB41) were used. ANN model was used to predict
the efficiency of dye removal from aqueous solution.
The effect of adsorbent dosage and dye concentration
on dye removal was evaluated. The kinetic and iso-
therm of adsorption process was investigated.

2. Experimental

2.1. Materials and methods

Copper sulfate·5H2O powder, nickel sulfate·6H2O
powder, and sodium hydroxide were purchased from
Merck (Germany). Two cationic dyes (BB41 and BR18)
were used as model dyes. The chemical structure of
dyes is shown in Fig. 1.

2.2. Preparation of CuO–NiO nanocomposite and
characterization

Copper sulfate (1 g) and nickel sulfate (1 g) were
added to 90 mL of deionized water containing sodium
hydroxide (1 g). The solution was magnetically stirred
for 3 h. The bottle containing the solution was sealed
and placed at 120˚C in an oven for 24 h. Then, the
supernatant was discarded and residue solid was
washed with deionized water. The precipitate was
dried in an oven at 120˚C. The functional groups of
nanocomposite were studied using FTIR (Perkin-Elmer
spectrophotometer spectrum one) in the range 4,000–
450 cm−1. The morphological structure of nanocom-
posite was examined by SEM (LEO 1455VP scanning
electron microscope). The powder XRD measurement
was recorded by XRD model Siemens D-5000 diffrac-
tometer with Cu Kα radiation at room temperature.

2.3. Adsorption procedure

Nanocomposite was added to dye solution
(250 mL) and the solution was stirred. The solution
samples were withdrawn at certain time intervals dur-
ing the adsorption process. The absorbance change of
samples was monitored and determined. At the end

Fig. 1. The chemical structure of dyes.
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of dye adsorption process, samples were centrifuged
and their absorbance was determined. UV–vis Spec-
trophotometer (Perkin-Elmer Lambda 25 Spectropho-
tometer) was used for absorbance measurements of
samples. Maximum wavelength for absorbance mea-
surement of BR18 and BB41 was 488 and 580 nm,
respectively.

The effect of adsorbent dosage on dye removal
was investigated by contacting 250 mL of dye solution
(20 mg/mL) at room temperature for 60 min. Different
amounts of nanocomposite (0.1–1.6 g/L) were used.

The effect of initial dye concentration (20–80 mg/L)
on dye removal was studied by contacting 250 mL of
dye solution with nanocomposite at room temperature
for 60 min.

3. Result and discussion

3.1. Characterization

In order to investigate the functional group of
CuO–NiO nanocomposite, FTIR in the range
450–4,000 cm−1 was studied. FTIR spectrum of the
synthesized adsorbent is shown in Fig. 2. The peak at
3,437 cm−1 is attributed to hydroxyl group stretching
[42,43]. The sharp band at 3,642 cm−1 is assigned to
isolated hydroxyl groups [42]. The band at 1,632 cm−1

is attributed to bending vibration of water molecule
[42–46]. The bands at 615 and 499 cm−1 are due to
Ni–O–H bending and Ni–O stretching, respectively
[42,47,48]. The band assigned at 530–440 cm−1 of the
mixed oxides may be attributed to the M–O (Cu–O)
vibration [43]. The peak at 1,011 cm−1 is related to
bending vibration of OH.

SEM is a suitable tool for characterization of shape
and morphology of material surface. FESEM and SEM
images of CuO–NiO nanocomposite are shown in

Fig. 3. As it is evident in the image, nanoparticles
have a flake shape with thickness <50 nm.

Fig. 4 shows the XRD pattern of CuO–NiO
nanocomposite. NiO diffraction peaks and CuO
diffraction peaks are clearly observed, indicating a
mixture of CuO and NiO [43,49–51].

3.2. ANN modeling of dye removal

To predict the dye removal in this study, Neural
Network Toolbox V4.0 of MATLAB 9 mathematical
software was used. A three-layer ANN with tangent
sigmoid transfer functions with backpropagation algo-
rithm was designed. The data gathered from batch
dye-removal experiments were divided into input
matrix and target matrix. This model consisted of an
input layer, a hidden layer, and an output layer. An
ANN was trained to perform a particular (activation)
function by adjusting the values of the connections
(weights) between elements (neurons). The activation
function produced the output using a sum weight of
each neuron (Wi) and a bias (bi) that a constant
weight of a neuron representing the generalization
error. The performance of the ANN model was sta-
tistically measured by the mean square error (MSE)
and regression coefficient, which are calculated with
the experimental values and network predictions.
These calculations are used as a criterion for model
adequacy obtained as follows [23–41]:

MSE ¼
PN

i¼1 ypred � yexp
� �2

N
(1)

R2 ¼ 1�
PN

i¼1 ypred � yexp
� �2

PN
i¼1 yexp � ym

� �2 (2)

Fig. 2. FTIR spectrum of CuO–NiO nanocomposite.
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where N, ypred, yexp, ym and i are the number of data
points, the network prediction, the experimental
response, the average of actual values, and an index
of data, respectively.

The optimum number of neurons was determined
based on the minimum value of MSE of the training
and prediction set. The optimization was done using
Levenberg–Marquardt algorithm as a training algo-
rithm and with varying neuron number. Fig. 5 shows
the relationship between number of neurons and MSE.

A regression analysis of the network response
between ANN outputs and the corresponding targets
was performed. The graphical output of the network
plotted vs. the targets as open circles is illustrated in
Fig. 6. Taking into account the nonlinear dependence
of the data, linear regression shows a good agreement
between ANN outputs (predicted data) and the corre-
sponding targets (experimental data). The best linear
fit was indicated by a solid line and R2 values.

Dye removal at different CuO–NiO nanocomposite
dosages (g) is shown in Fig. 7. The increase in dye
adsorption with adsorbent dosage can be attributed to

the increase in adsorbent surface and availability of
more adsorption sites. However, if the adsorption
capacity was expressed in mg/g of material, the
capacity decreased with the increasing amount of the
adsorbent. It can be attributed to overlapping or
aggregation of adsorption sites resulting in a decrease
in total adsorbent surface area available to the dye. In
addition, Fig. 7 shows a comparison between the
ANN model predictions and the experimental data as

Fig. 3. Images of CuO–NiO nanocomposite (a) FESEM (left) and (b) SEM (right).

Fig. 4. XRD pattern of CuO–NiO nanocomposite.

Fig. 5. The relationship between number of neurons and
MSE (a) BB41 and (b) BR18.
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a function of adsorbent dosage. It can be seen that the
ANN model satisfactorily predicts the trend of the
experimental data.

The effect of initial dye concentration on dye
removal were studied. The results are shown in Fig. 8.
It is obvious that the higher the initial dye concentra-
tion, the lower the percentage of dye adsorbed. The
amount of the dye adsorbed onto CuO–NiO nanocom-
posite increases with an increase in the initial dye con-
centration of solution if the amount of adsorbent is
kept unchanged due to the increase in the driving
force of the concentration gradient with the higher ini-
tial dye concentration. The adsorption of dye by the
adsorbent is very intense and reaches equilibrium very
quickly at low initial concentration. At a fixed
CuO–NiO nanocomposite dosage, the amount of dye
adsorbed increased with increasing concentration of
solution, but the percentage of adsorption decreased.
In other words, the residual dye concentration will be
higher for higher initial dye concentrations [52]. In
addition, the experimental data and ANN calculated
outputs for various initial dye concentration values
are shown in Fig. 8. It can be seen that the ANN
model shows a good performance on prediction of the
experimental data.Fig. 6. The graphical output of the network outputs plotted

vs. the targets as open circles (a) BB41 and (b) BR18.

Fig. 7. ANN predicted outputs (pred.) and experimental
data (exp.) of dye removal at different adsorbent dosages
(dye: 20 mg/L and natural pH 6) (a) BB41 and (b) BR18.

Fig. 8. ANN predicted outputs (pred.) and experimental
data (exp.) of dye removal at different initial dye concen-
trations (adsorbent dosage: 0.15 g for BB41 and 0.4 g for
BR18 and natural pH 6) (a) BB41 and (b) BR18.
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3.3. Adsorption kinetics

Several models can be used to express the mecha-
nism of adsorption onto an adsorbent. In order to
investigate the mechanism of adsorption, characteristic
constants of sorption were determined using pseudo-
first-order, pseudo-second-order, and intraparticle
diffusion models [53,54]. A linear form of pseudo-first-
order model is [55]:

log qe � qtð Þ ¼ log qeð Þ � k1=2:303ð Þt (3)

where qe, qt, and k1 are the amount of adsorbed dye at
equilibrium (mg/g), the amount of adsorbed dye at
time t (mg/g), and the equilibrium rate constant of
pseudo-first-order kinetics (1/min), respectively.

To understand the applicability of the pseudo-first-
order for dye adsorption onto CuO–NiO nanocompos-
ite at different adsorbent dosages, linear plots of log
(qe− qt) vs. contact time (t) are plotted (Fig. 9). The val-
ues of k1, R

2, and the calculated qe ((qe)cal) are shown
in Table 1.

Linear form of pseudo-second-order model was
illustrated as [55]:

t=qt ¼ 1=k2q
2
e þ 1=qeð Þt (4)

where k2 is the equilibrium rate constant of pseudo-
second-order (g/mg min).

To understand the applicability of the pseudo-
second-order for dye adsorption onto the nanocom-
posite at different adsorbent dosages, linear plots of
t/qt vs. contact time (t) are plotted (Fig. 10). The
values of k2, R

2, and (qe)cal are shown in Table 1.
The possibility of intraparticle diffusion resistance

affecting adsorption was explored using the intraparti-
cle diffusion model as [54,55]:

qt ¼ kpt
1=2 þ I (5)

where kp and I are the intraparticle diffusion rate
constant and intercept, respectively.

To understand the applicability of the intraparticle
diffusion for dye adsorption onto the nanocomposite
at different adsorbent dosages, linear plots of qt vs. t

1/2

are plotted (Fig. 11). The values of kp, R
2, and I are

shown in Table 1.
The R2 values showed that dye adsorption by

CuO–NiO nanoadsorbent did not follow pseudo-
first-order and intraparticle diffusion kinetics (Table 1).
The linearity between the t/qt against t and the R2

values show that the kinetics of dye removal followed
pseudo-second-order. In addition, the results obtained
for ANN modeling were used to calculate the adsorp-
tion kinetic (Table 1). It is shown that the predictions
of the designed ANN models are in close agreement
with the experimental data.

3.4. Adsorption isotherm

Several isotherms such as Langmuir, Freundlich,
and Temkin models were investigated in detail
[56–60]. The Langmuir equation investigates the
interaction between the adsorbent and the adsorbate
as a linear, reversible, and monolayer chemical reac-
tion. This model assumes that the adsorbent surface is
completely homogeneous and each adsorbent site can
bind a maximum of one adsorbate molecule. In addi-
tion, there are no interactions between molecules of
the adsorbate. The Langmuir equation can be written
as follows:

Ce=qe ¼ 1=KLQ0 þ Ce=Q0 (6)

where Ce, KL, and Q0 are the equilibrium concentra-
tion of dye solution (mg/L), the Langmuir constant
(L/g), and the maximum adsorption capacity (mg/g),
respectively.

Fig. 9. Pseudo-first-order kinetics of dye removal by the nanocomposite (a) BB41 and (b) BR18.
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Table 1
Linearized kinetics coefficients of dye removal using nanostructure at different adsorbent dosages

Data Dye
Adsorbent
(g) (qe)exp

Pseudo-first-order Pseudo-second-order
Intraparticle
diffusion

(qe)cal k1 R2 (qe)cal k2 R2 kp I R2

Experimental data BB41 0.0250 84 22 0.0541 0.7538 85 0.0096 0.9993 2.1577 68 0.9713
0.0500 67 26 0.0746 0.8567 68 0.0080 0.9983 2.2010 50 0.9843
0.1000 39 13 0.0937 0.9201 40 0.0213 0.9997 1.1673 31 0.9336
0.1500 29 7 0.0762 0.8480 29 0.0374 0.9999 0.6892 24 0.9192

BR18 0.0500 25 10 0.0405 0.7578 25 0.0146 0.9954 1.3363 15 0.8737
0.2000 14 4 0.0479 0.7762 14 0.0389 0.9984 0.5201 10 0.9611
0.3000 12 4 0.0723 0.8473 12 0.0599 0.9996 0.3926 9 0.9392
0.4000 10 2 0.0656 0.7114 10 0.1399 0.9999 0.2228 8 0.8021

Predicted data by
ANN

BB41 0.0250 84 21 0.052 0.7930 85 0.0110 0.9980 6.7000 44 0.4590
0.0500 67 29 0.0812 0.8970 68 0.0096 0.9970 5.7300 31 0.5650
0.1000 39 10 0.0670 0.8740 40 0.0260 0.9990 3.1890 20 0.5100
0.1500 29 7 0.0790 0.8970 29 0.0520 0.9998 2.3301 15 0.4660

BR18 0.0500 25 9 0.0340 0.7290 25 0.0180 0.9910 2.0960 9 0.5720
0.2000 13 4 0.0440 0.7900 14 0.0450 0.9980 1.2480 6 0.6440
0.3000 13 4 0.0520 0.8400 13 0.0570 0.9990 1.1570 5 0.6200
0.4000 10 2 0.0980 0.8700 10 0.1520 0.9990 0.8220 5 0.4850

Fig. 10. Pseudo-second-order kinetics of dye removal by the nanocomposite (a) BB41 and (b) BR18.

Fig. 11. Intraparticle diffusion kinetics of dye removal by the nanocomposite (a) BB41 and (b) BR18.
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The Freundlich isotherm assumes that the
adsorbent surface is a heterogeneous surface with a
non-uniform distribution of heat of adsorption over
the surface. The Freundlich isotherm can be expressed
by:

log qe ¼ log KF þ 1=nð Þ log Ce (7)

where KF is adsorption capacity at unit concentration
and 1/n is the adsorption intensity. The 1/n values
indicate the type of isotherm to be irreversible (1/n = 0),
favorable (0 < 1/n < 1), and unfavorable (1/n > 1).

The adsorption in Temkin isotherm is character-
ized by a uniform distribution of binding energies, up
to some maximum binding energy. The Temkin
isotherm is given as:

qe ¼ B1lnKT þ B1lnCe (8)

where KT is the equilibrium binding constant (L/mol)
corresponding to the maximum binding energy and
constant B1 (RT/b) is related to the heat of adsorption.
In addition, R and T are the gas constant
(8.314 J/mol K) and the absolute temperature (K),
respectively.

To study the applicability of the Langmuir,
Freundlich, and Temkin isotherms for the dye adsorp-
tion onto CuO–NiO nanocomposite at different adsor-
bent dosages, linear plots of Ce/qe against Ce, log qe
vs. log Ce, and qe vs. ln Ce are plotted.

The Q0, KL, KF, 1/n, KT, B1, and R2 (correlation
coefficient) are given in Table 2. The Temkin isotherm
is found to fit quite well with the experimental data
for BB41 in accordance with the linear correlation
coefficient. The R2 values for BR18 indicate that
the Freundlich isotherm is most appropriate for

adsorption of this dye onto CuO–NiO nanocomposite.
In addition, the results obtained for ANN modeling
were used to calculate the adsorption isotherm
(Table 2). The predictions of the designed ANN mod-
els are in close agreement with the experimental data.

4. Conclusion

In this study, adsorption process as a low-cost,
simple, and efficient method was applied to remove
cationic dyes from wastewater. CuO–NiO nanocom-
posite as an adsorbent was synthesized. The adsorbent
was characterized with SEM, FTIR, and XRD. The
result of adsorption process showed that CuO–NiO is a
suitable adsorbent for cationic dye removal. The opti-
mum adsorbent dosage and dye concentration were
obtained. The results of kinetic studies revealed that
adsorption of BB41 and BR18 onto CuO–NiO nanocom-
posite involved pseudo-second-order model. The equi-
librium data showed that the experimental data were
correlated reasonably well by Temkin isotherm model
for BB41 and Freundlich isotherm model for BR18.
ANN predicted results are very close to the experimen-
tal results with good correlation coefficient. The results
showed that ANN modeling could effectively simulate
and predict the behavior of the process.
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[28] A. Çelekli, F. Geyik, Artificial neural networks (ANN)
approach for modeling of removal of Lanaset Red G
on Chara contraria, Bioresour. Technol. 102 (2011)
5634–5638.
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