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ABSTRACT

In this study, the nanoparticles of TiO,-P25 in the slurry situation were used for photore-
duction of Cr(VI). The experiments were conducted in different operational conditions such
as initial concentration of Cr(VI), varying dosages of photocatalyst, and different irradiation
times and pHs. Using the response surface methodology, the mathematical equation for
estimating the percentage of Cr(VI) photocatalytic removal was obtained. For the first time,
the results from this model were utilized for modeling the process by artificial neural net-
works (ANN). The comparison of the analyzed data obtained from ANN and the experi-
mental data showed that the method was highly efficient in the modeling of process. The
relative importance of the parameters affecting the process evaluated by the weights from
ANN indicated that pH was the most important factor in photocatalytic reduction of Cr(VI).

Keywords: Heterogeneous photocatalysis; Photocatalytic reduction; Cr(VI); Titanium dioxide
nanoparticles; Artificial neural networks; Response surface methodology

1. Introduction

Cr(VD) is a toxic pollutant found in industrial
wastewaters [1-4]. Chromium exists in two oxidation
forms of Cr(Ill) and Cr(VD [5-7]. Cr(IID) is much less
toxic and mobile than Cr(VI). In fact, Cr(IIl) in low
doses is an essential dietary mineral [8,9]. Compared
with other heavy metals, chromium has a wider range
of applications. It is used in tanning leather and man-
ufacturing paint, pigments [10-13], photographic
materials, steel alloys [14], glass, ceramics, and fungi-
cides [15]. It is also used in cement industries, mining,
water coolant of nuclear power plants, and petroleum
refining processes [10,14]. The concentration of Cr(VI)
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in industrial wastewater ranges between 0.5 and
270 mg L™ [16]. The hexavalent state may be found in
the form of chromic acid (H,CrQO,), dichromate anion
(CrzO%*), hydrogen chromate anion (HCrOj), or
chromate anion (CrO2") [1]. The hexavalent form is
500 times more toxic than the trivalent form [17]. The
toxic effects of Cr(VI) include skin irritation, lung can-
cer, and harmful effects on kidney, liver, and gastric
[18,19]. Common methods of Cr(VI) removal include
chemical reduction, ion exchange, adsorption on coal
or active carbon, and bacterial reduction [20,21]. The
photocatalytic reduction of Cr(VI) is possible with
semiconductors such as ZnO, TiO,, ZnS, CdS, and
WO; [22,23]. Since late twentieth century, TiO, has
been used as an efficient photocatalyst, because of its
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high photocatalytic activity, nontoxic nature, good
stability, and low-cost fabrication [8,14].

Response surface methodology (RSM), which
began with the works of Box and Wilson in 1951,
refers to a set of statistical and mathematical tech-
niques that contribute to the processes of develop-
ment, improvement, and optimization and can
simultaneously determine the optimum of several
variables with the minimum number of experiments
and quantitative data and by offering appropriate
experimental design [24,25]. Using RSM, it is possible
to estimate linear, interaction, and quadratic effects of
the factors, and to develop a prediction model for the
response. [26-29]. The first- and second-order models
are in the form of Egs. (1) and (2), respectively:
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where y is the response, f is the constant coefficient,
Bi is the coefficient of linear effects, f;; is the coefficient
of squared effects, f;; is the coefficient of interaction
effects, x; and x; are the variables, and ¢ is the random
error [30-32]. To distinguish the levels from each
other, codes such as (+1), (0), and (—1) are used. This
simplifies recording the experimental conditions and
laboratory processes. Factorial levels are selected in a
way that the highest level is (+a), the lowest level is
(-a), and the base level is (0). Variable parameters can
be coded using the following simple formula:

X; —Xo
AX
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In this equation, x; is the dimensionless coded value
of the ith independent variable, X; is the uncoded value
of the ith test variable, X, is the real amount of
independent variable in the central point, and AX is the
step change value [24]. Central composite designs
(CCD) are the most commonly used designs in the
response surface methodology. This design, (CCD),
consists of a full factorial or fractional design as well as
a star design in which experimental points are at a dis-
tance a from its center and a center point. The total
number of experiments is calculated using the follow-
ing formula: N = 2k 4 2k + cp, where k is the number of
independent variable and c, is the replicate number of
the central point. The 2 k denotes the number of star
points with certain a [33]. The points in the full factorial
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design are located at —1 and +1 levels; the points in star
design are located at —a and +a levels, and the central
point is located at level zero [31].

The new perspectives about neural networks
emerged in the twentieth century when McCulloch
and Pitts showed that neural networks could calculate
every arithmetic and logical functions. Their work can
be regarded as the starting point for the science of
artificial neural networks (ANN), which is an effective
modeling technique. Indeed, neural networks do not
require the mathematical description of the phenom-
ena involved in the process. Therefore, the simulation
of the complicated systems is carried out more
efficiently [34-36]. In the feed-forward networks, the
neurons in each layer transmit the signals from the
environment to the neurons in the next layers; in fact,
the direction of the movement of signals is from input
to output [34,37]; consequently, there is no feedback
or loop. Standard back propagation is a gradient des-
cent algorithm in which the network weights are
moved along the negative of the gradient of the per-
formance function [38]. A computational neural net-
work consists of simple processing units called neuron
[39]. Every network is composed of artificial neurons
which have parallel connections with the other layers.
The strength of these interconnections is determined
by the weight associated with them [38,40]. For every
ANN, the first layer constitutes the input layer (inde-
pendent variables) and last one forms the output layer
(dependent variables). One or more neuron layers
called hidden layers can be located between them
[37,39,41]. The number of neurons in the hidden layer
can be determined by the desired accuracy in predic-
tions. Therefore, it can be used as a parameter for
designing neural networks [37,38,42].

One of disadvantages of ANN is the necessity
for a large number of experimental data for training
of network [36,43,44]. In the present study, a mathe-
matical equation was obtained between the percent-
age of photocatalytic reduction of Cr(VI) and the
operational parameters by RSM method. Using the
obtained equation, some additional results were
achieved, which were used for the first time in
modeling the mentioned process using ANN. The
accuracy of the model created by ANN was tested
by the simulation of the experimental data used in
RSM optimization.

2. Experimental setup
2.1. Materials

Potassium dichromate, nitric acid, and sodium
hydroxide used in the study were purchased from
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Merck (Germany). TiO,-P25 was Degussa, constituting
approximately 80% anatase and 20% rutile. It had a
BET surface area of 50 + 1I5m”*g ' and an average
particle diameter of 21 nm, containing 99.5% TiO,.
The TEM image of the TiO,-P25 nanoparticles is
shown in Fig. 1. TEM image showed a wide heteroge-
neity in the size of the titania particles, ranging from
ca. 10 to 50 nm.

2.2. The procedure

The nanoparticles of TiO,-P25 in a slurry state
were used in the study. First, a suspension of TiO,-
P25 nanoparticles in the desired pH was put under
ultrasonic waves (Elma T460/H) in order to increase
the dispersion of TiO, in water. Then, the obtained
suspension was put inside a quartz tubular photoreac-
tor equipped with a UV lamp (15 W, UV-C, manufac-
tured by Philips, Holland) vertically placed in front of
the reactor. A stream of oxygen was passed through
the reactor at a flow rate of 0.8 mL min~' and allowed
to equilibrate for 15 min in the darkness. The photo-
catalytic reaction started when the UV lamp was
switched on. Then, at defined intervals, 5 mL of the
samples was taken and centrifuged (Hettich EBA).
The concentration of Cr(VI) was measured by means
of a UV-vis spectrophotometer (Ultrospec 2000,
Biotech pharamcia, England) at 350 nm.

100nm

Fig. 1. TEM image of the TiO, nanoparticles.
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The experimental data were analyzed by DX7
professional software for designing RSM. All ANN
calculations were done wusing the mathematical
software of Matlab 6.5 with an ANN toolbox. The
three-layer network with sigmoid transfer function
and a back propagation algorithm error were designed
in this research. Sigmoid transfer function is the most
widely used transfer function for the input and hid-
den layers. This function is nonlinear and is used in
back propagation networks. This function receives the
amount of input between —00 and +00 and produces
an output between zero and one based on the
following formula [43,45]:

1
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To determine the optimum number of the hidden
nodes, a series of topologies, in which a number of
nodes change, were used. Mathematical functions
such as mean square error (MSE) are usually used as
error function, which can be obtained using the
following equation [38,40]:

=N N2
MSEzZi:l (yl,plr;c]d Yiexp) )

In which N is the number of data points, V;,preq is
the network prediction, and ¥j.exp is the experimental
response.

For sigmoid transfer function, all samples must fall
within the range of 0.2-0.8. Therefore, all data groups
(X)) were turned into the new value of A; as follows
[4146]:

06(X, — min(Xi))
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Garson has proposed an equation based on partition-
ing of connection weights [47]:
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where [; is the relative importance of the jth input var-
iable on output variable, N; and Nj, are the number of
input and hidden neurons, respectively, W’s are con-
nection weights, the superscripts “i”, “h”, and “0”
refer to input, hidden, and output layers, respectively,
and subscripts “k”, “m”, and “n” refer to input,

hidden, and output neurons, respectively.
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3. Results and discussion

3.1. The optimization of the process of Cr(VI)
photocatalytic reduction with RSM

3.1.1. Design of the experiment with RSM

To investigate the main and mutual effects of vari-
ables affecting the value of response in the process of
Cr(VI) reduction TiO, nanoparticles, the RSM was uti-
lized. The experiment was designed using CCD with
reduced quadratic model. In this method, the effect of
four independent factors of the initial concentration of
Cr(VD), the dosage of TiO, catalyst, irradiation time,
and pH on the value of the response was studied. The
ranges and levels of these factors are given in Table 1.
The experiments designed and the respective results
are also shown in Table 2.

3.1.2. Response analysis

After obtaining the results of the experiments, the
possibility of offering a suitable mathematical model
between the independent variables (initial concentra-
tion of Cr(VI), the pH of the solution, the amount of
TiO, nanocatalyst, and light irradiation time) and the
value of the response (dependent variable) was inves-
tigated. The model in which the data were calculated
mathematically was a reduced quadratic mathematical
model. The coefficient of each of the parameters and
other characteristics in the mathematical model are
given in Table 3.

The obtained relation between the response (the
percentage of reduction) and each of the factors is
shown in the following equation:

R=236.63-780xA—11.72x B+5.69 x C+4.00 x D
—0.14 x AB+0.42 x BD + 0.43 x A> —1.00 x B?

®
where R is the efficiency or the percentage of Cr(VI)

reduction (response). A, B, C, and D are parameters and
coefficients obtained through linear effects regression,

Table 1
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the mutual effects of coefficients (AB and BD) are
obtained through interaction effects regression of
parameters, and the coefficients of A> and B” are
obtained through quadratic effects regression.

According to this equation, the parameters which
had significant effects were the initial concentration of
Cr(VD) (A), pH of solution (B), the amount of TiO,
nanocatalyst (C), the light radiation time (D), the
mutual effects of the two parameters of initial concen-
tration of the pollutant and pH of the solution (AB),
the mutual effects of the two parameters of solution
pH and the irradiation time (BD), the square root of
the initial concentration of Cr(VI) (A?), and the square
root of solution pH (B?).

To analyze the responses and variables, the analy-
sis of variance was used. The results are given in
Table 4.

The value of R® is an index for measuring the
range of variability in the observed response. The
results indicate that this model has a correlation coeffi-
cient of R*=0.9812. The value of R® reveals that
98.12% of the changes occurred in the efficiency of
reduction by independent variables. The model failed
to account for only 1.88% of the changes.

To examine the validity of the model, the residual
values (difference between the experimental and pre-
dicted response values) were calculated. Fig. 2 shows
the dispersion of the residual values. The linear nature
of the normal probability plot for the residuals indi-
cates that the proposed model is correct.

Fig. 3 shows the residual values vs. the number of
experiments. The random distribution of the residual
values about zero indicates the accuracy of the
selected model.

3.1.3. RSM design and three dimensional graphs

In order to observe and study the effect of the
parameters on the response, respective three-
dimensional figures were drawn. Since it is not possi-
ble to draw more than three dimensions on the screen,
the effect of the parameters on response was reported

Factors and their levels in designing experiments with RSM method

Range and levels

Factor —a -1 0 +1 +a
Initial concentration of Cr(VI) (mg L™ 15 20 25 30 35
pH of the solution 1 2 3 4 5
Dosage of TiO, nanocatalyst (mg L") 100 150 200 250 300
Irradiation time (min) 7.5 15 225 30 37.5
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Table 2
The experiments designed with RSM and the respective experimental results

Factors and the obtained experimental responses

Number of Experimental
experiments A: [Cr] (mg LY B: pH C: TiO, (mg L™ D: Time (min) responses % Rgxp
1 20 2 150 15 43.3

2 30 2 150 15 31.37

3 20 4 150 15 25.66

4 30 4 150 15 5.88

5 20 2 250 15 59.64

6 30 2 250 15 40.85

7 20 4 250 15 28.92

8 30 4 250 15 20.15

9 20 2 150 30 55.07
10 30 2 150 30 38.56
11 20 4 150 30 31.7

12 30 4 150 30 15.36
13 20 2 250 30 61.8

14 30 2 250 30 49.35
15 20 4 250 30 43.46
16 30 4 250 30 26.47
17 15 3 200 22.50 54.68
18 35 3 200 22.50 21.84
19 25 1 200 22.50 57.25
20 25 5 200 22.50 7.84

21 25 3 100 22.50 22.74
22 25 3 300 22.50 49.15
23 25 3 200 7.50 27.71
24 25 3 200 37.50 42.74
25 25 3 200 22.50 37.91
26 25 3 200 22.50 34.12
27 25 3 200 22.50 35.03
28 25 3 200 22.50 37.91
29 25 3 200 22.50 40.52
30 25 3 200 22.50 38.17
Table 3

The coefficient of each parameter in the reduced quadratic mathematic model

Factor Coefficient estimate Degree of freedom Standard error
Intercept 36.63 1 0.67
A: ([Crlp) -7.8 1 0.48
B: pH -11.72 1 0.48
C: TiO, 5.69 1 0.48
D: Time 4 1 0.48
AB -0.14 1 0.58
BD 0.42 1 0.58
A? 0.43 1 0.44
B? -1 1 0.44
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Table 4
ANOVA results for the response surface reduced quadratic model for reduction Cr(VI)
Source Sum of squares Degree of freedom Mean square F-value p-Value prob > F Situation
Model 5956.13 8 744.52 136.64 <0.0001 Significant
LOF 87.29 16 5.46 1.01 0.5482 Not significant
R*=0.9812
R?,q; = 0.9740
3.00
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Fig. 2. Normal probability plot of residuals for photocata-
lytic reduction efficiency of Cr(VI).

in pairs. Fig. 4 shows the effect of the initial concentra-
tion of Cr(VI) and the pH of the solution on the effi-
ciency of Cr(VD) reduction. The figure indicates the
fact that with the increase in the initial concentration
of Cr(VI), the percentage of reduction decreases. The
reason is the fact that the absorption of solution goes
up with the increase in K,Cr,O; concentration. As a
result, the greater amount of the radiated UV is
absorbed by Cr solution before reaching the photocat-
alyst surface causing lower percentage of Cr(VI)
photoreduction [5,48]. The graph demonstrates that
maximum amount of efficiency for photocatalytic
reduction is observed at pH 2. The catalyst surface
gets positive charge as a result of proton absorption,
and Cr,0}", which carries negative charge that could
better approach it and the reduction is facilitated by
the excited electrons [22,23].

Fig. 5 also shows the effect of pH and the light irra-
diation time on the efficiency of Cr(VI) reduction by
TiO, nanoparticles. The figure indicates that the

Fig. 3. The residual values vs. run number for photocata-
lytic reduction efficiency of Cr(VI).

photocatalytic Cr(VI) reduction increases with the
enhancement of irradiation time. Because with
increased irradiation time, more electrons are excited,
causing the percentage of Cr(VI) reduction to increase
[6,49]. The maximum efficiency of Cr(VI) reduction by
TiO, nanoparticles in the RSM design is approximately
60%. Fairly low efficiency of Cr(VI) reduction to Cr(III)
can be related to the deactivation of the catalyst due to
Cr(III) deposition on the catalyst surface [50].

A comparison between experimental results and
the results predicted through RSM are shown in
Fig. 6. The value of R*=0.9812 indicates the corre-
spondence between the experimental data and the
data predicted by RSM.

3.2. ANN modeling of photocatalytic of Cr(VI) reduction

The topology of an ANN is determined by the
number of layers, the number of nodes in each layer,
and the nature of transfer functions [40]. For ANN
modeling of Cr(VI) photocatalytic reduction with TiO,



2912

45.25

325

R1

19.75

2.00

4.00 30.00

Fig. 4. Three dimensional graph of the effect of initial con-
centration of Cr(VI) and pH on the efficiency of Cr(VI)
photocatalytic reduction by TiO, nanoparticles.

58
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Fig. 5. Three-dimensional graph of the effect of pH and
light irradiation time on the efficiency of Cr(VI) photocata-
lytic reduction by TiO, nanoparticles.

nanoparticles, a three-layer feed-forward back propa-
gation was used. This network consisted of four neu-
rons in the input layer, four neurons in hidden layer,
and one neuron in output layer (Fig. 7).

As shown in Fig. 7, the input variables include the
initial concentration of Cr(VI), the amount of TiO, cat-
alyst, light irradiation time, and pH. The number of
neurons in the hidden layer defines the topology of a
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Fig. 6. Comparison between experimental results and
predicted values from RSM.

feed-forward network. To determine the optimum
number of neurons in the hidden layer, different
topologies of 1-5 neurons were conducted. The MSE
was used in every topology as the error function.
Fig. 8 shows MSE vs. the number of neurons in the
hidden layer.

As this figure shows, the minimum MSE can be
obtained with the inclusion of four neurons in the hid-
den layer. In this study, a sigmoid transfer function
was used in the hidden layer, and a pureline function
was used in the output layer as transfer function.

One of the problems in ANN modeling is the need
for a large quantity of experimental data. In the pres-
ent study, for the first time, the results of RSM-based
mathematical equation were used for training ANN.
Since the study examined four parameters at five lev-
els examined here, for RSM, there could be a total of
625 pieces of data for ANN modeling, out of which

Hidden layer

Input layer

Output layer

Cr Reduction%

Fig. 7. The optimal structure of ANN.
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Fig. 8. Effect of the number of neurons in the hidden layer
on the performance of the neural network.

558 data were selected and used for training, validat-
ing, and testing the network. Moreover, to simulate
the network, 25 data used for RSM design were uti-
lized. From 558 data, 60% were randomly selected for
training, 20% for validation, and 20% for testing.
Based on sigmoid transfer function, all data must be
scaled between 0.2 and 0.8 range. To calculate training
validation and test errors, all the data were
re-converted into the original scale to be compared
with the original responses.

"] (@

80 4 y=1.0002x - 0.0069
70 4 R*=1

50 4

Removal% (Predicted from ANN)

0 20 40 60

Removal% (Predicted from RSM)
100
90 4 (c)
80 4 y=0.9868x + 0.5802
70 R =0.9858
60 -
50 4
40 4
30 4
20 .
10
0 ;

Removal% (Predicted)

80 100
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3.2.1. Testing of the ANN model

To test the precision of the ANN model a compari-
son was made between the modeling and experimen-
tal results. Fig. 9(a) shows the comparison between
RSM-based data and the data obtained from ANN
model with four neurons in the hidden layer.

The results in Fig. 9(a) indicate that ANN is able to
get appropriate training from RSM-based data due to
the high amount of input data, since the amount of R
and the slope of the obtained line is 1 and the inter-
cept of the obtained line is very near to zero. To
ensure appropriate network training, 25 experimental
data, which had not been used in ANN, were used for
simulation. The comparison between the ANN-based
results and those of RSM for 25 data as well as for the
experimental results is shown in Fig. 9(b) and (c),
respectively. The results confirm that the neural net-
work model trained with data obtained from RSM-
based mathematical equation is able to sufficiently
predict the photocatalytic reduction of Cr(VI). Having
ensured the appropriateness of ANN training, net-
work weight matrices were obtained and reported in
Table 5, in which W; is the weight between the input

100

0 20 40

s % (b)
$ 80+ y=1.0008x - 0.0278
E 70 RP=1
H 0
'§ 60
-;; 50 4
& 40
®
S 04
g 20 -
% 104
0 : r ; ; !
0 20 40 60 80 100
Removal% (Predicted from RSM)
*
60 80 100

Removal% (Experimental)

Fig. 9. Comparison between the data from RSM-based mathematical equation and the data from ANN for all data (a),
Simulation of the RSM data with ANN (b), Simulation of the experimental data with ANN (c).



2914 M. Sabonian and M.A. Behnajady | Desalination and Water Treatment 56 (2015) 2906-2916

Table 5

Matrices of weights

w, W>

Neuron Variable Bias Neuron Weight

- [Cr(VDI]o pH [TiOs]o Time

1 1.5395 —0.4008 —0.1169 —6.9449 —5.2240 1 0.0084

2 0.0969 0.0287 —0.1399 —0.0434 0.0127 2 —7.2532

3 —0.0413 —0.6758 —0.0004 0.1434 1.3402 3 4.2365

4 0.9760 —0.0182 0.0007 —0.0173 1.3787 4 —0.9108
Bias 0.8237

Table 6 Acknowledgments

Relative importance of the input variables in the percent-
age of Cr(VI) reduction

Input variable Importance (%)

Initial concentration of Cr(VI) 27.07
Initial amount of TiO, nanocatalyst 26.49
Irradiation time 14.07
Initial pH 32.37

and hidden layers, and W, is the weight between the
hidden and output layers. Weights are the coefficients
between the artificial neurons which act like synapse
strengths between the axons and dendrites in real bio-
logic neurons. Therefore, each weight determines what
proportion of the input signal will be transferred to
the body of the neuron.

Using the matrices of the weights in Table 5 and
Eq. (7), the importance of the input variables in the
percentage of Cr(VI) reduction was calculated. All the
input variables affected the percentage of Cr(VI)
reduction, but the effect of pH was more than the
others. This is shown in Table 6.

4. Conclusions

The results indicate that the data obtained from
RSM-based mathematical equation could be used to
model artificial neural network. The number of neu-
rons in the hidden layer is among the parameters
affecting artificial neural network model. Therefore, by
changing the number of neurons in the hidden layer,
the least value of errors is observed with four neurons.
The study showed that the results from ANN corre-
sponded with those from RSM and the experimental
data. Therefore, it may be concluded that RSM can be
used for the production of data-sets needed for ANN
modeling.

Thanks to the Tabriz Branch, Islamic Azad Univer-
sity and the Iranian Nanotechnology Initiative Council
for their financial support.
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