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A B S T R A C T

Stirred rotating disk membrane modules (RDMM) have been found to provide maximum flux
enhancement due to minimization of the concentration polarization layer by shear effect. But
unfortunately rigorous theoretical modeling of RDMM has not been developed yet, which greatly
affects the simulation and optimization of this device under applications in many fields. In this
perspective, the work reported in this article was carried out to develop an efficient artificial neural
network (ANN) capable of predicting permeate flux in case of RDMM. Different ANNs, like
Feedforward, Elman, Hopfield and Radial Basis Network, were investigated to find the optimum
network configuration and corresponding network parameters have been estimated. As a case study,
the focus was given to ultrafiltration (UF) of casein whey, a complex protein mixture. For this
purpose the UF of whey was carried out in RDMM at different pH and transmembrane pressures,
with and without rotating the membrane. A detailed comparative study was made on the validation
results between the predicted flux and corresponding experimental values for different ANNs
investigated. Based on the results, it was concluded that the Radial Basis Network was most accurate
in terms of flux prediction and stability for UF using RDMM.

Keywords: Rotating disk membrane module; Ultrafiltration; Flux; pH; Transmembrane pressure;
Neural network

1. Introduction

Membrane separation involves partially separating a
feed containing a mixture of two or more components by
use of a semipermeable barrier (the membrane) through
which one or more of the species moves faster than
another or other species [1]. In this paper the emphases
have been given on the ultrafiltration (UF) membrane
separation in the whey treatment process using a rotating
disk membrane module (RDMM), and the subsequent
investigation for optimum artificial neural network

*Corresponding author.

(ANN) configuration. UF is a pressure-driven membrane
technique that uses porous membranes for the separation
of material in the 1×10!9 m–10×10!6 m size range, or stated
otherwise, compounds with molecular weights in excess
of 1,000 [2]. One of the major problems that is associated
with any confectionery industry is discarding waste-water
which contains much valuable protein such as "-
lactalbumin, $-lactoglobulin, etc. So the primary necessity
is to build up a treatment scheme so that all the proteins
from this casein whey can be recovered and the treated
water can be reused or recycled. In a recent communi-
cation [3], fractional UF using RDMM, followed by ion-
exchange membrane chromatography, was suggested for
partial recovery of different whey proteins. RDMM is an



C. Bhattacharjee et al. / Desalination and Water Treatment 2 (2009) 170–183 171

efficient device in terms of its hydrodynamics, but the
major problem lies in the lack of an available rigorous
theoretical model, making simulation of UF performances
and further scale-up difficult. 

The UF membrane process is commonly attributed to
mainly two different problems: one is membrane fouling
[4] and the other one is concentration polarization [5].
Fouling occurs when the membrane is physically ob-
structed either by a build-up of particulates on the surface
or by membrane compaction, whereas concentration
polarization refers to the formation of a concentration
boundary layer adjacent to the membrane, characteristics
of any pressure-driven membrane separation process,
which results in a local increase in the osmotic pressure
and the reduction of the permeate flux.

To alleviate this problem, new module designs are
being investigated such as spiral-wound modules,
vibrating shear enhanced process systems (VSEP), and
rotating disk or rotating disk stack modules [6]. Recently,
Luhui et al. [7] claimed that RDMM could be the most
efficient device showing high permeate flux. In this
membrane module the generated concentration boundary
layer or gel layer is swept away by the rotation of stirrer
on the membrane and by the rotation of membrane itself.
So in this module flux declination is less comparable to
any other modules. 

To describe the polarization phenomena in UF, several
models were developed so far. Usually all of them could
be classified into the following three categories: (a) resis-
tance-in-series model, (b) gel polarization model and
(c) osmotic pressure model. According to the gel polari-
zation model [8], a gel layer is formed on the membrane
surface, limited by solubility limit of the solute. As shown
by Wijman et al. [9], the three models mentioned above
predict almost equivalent permeate fluxes under a steady-
state condition, especially at higher concentrations. On the
other hand, it was shown by Danes et al. [10] that no
classical model as stated above could explain the
experimental data with good fit. Due to this reason, most
of the models that are reported in literature are usually
composite in nature, not based directly on any classical
models as listed above. 

Due to lack of a proper mathematical model for
describing flux declination, particularly in case of RDMM
due to its highly complex hydrodynamics, a general
approach has been made in this article by introducing the
concept of the Artificial Neural Network (ANN). This
technique is quite different from its peer Artificial
Intelligence (AI), which is a very common name in the
world of computer gaming programs. ANN is a training-
based network. The experimental points are used for the
training of the network. If the network could be trained
properly and accurately, then the outcome of the network
will resemble the real world. So it should be a vivid

realization to all of us that if the network is not trained
properly, i.e. if the supplied information to the network is
not accurate, then there could be a large margin of error
between the expected result and simulated result.

The work reported in this article was carried out to
simulate permeate flux for the UF of casein whey in
RDMM by using ANN, and subsequently, to investigate
the best network configuration. The main objective was to
establish a generic model, i.e. ANN, to study the hydro-
dynamics of a rotating disk membrane module and to
study the performance for different types of networks,
leading to identification of most optimized and efficient
network. For this purpose networks that were used to do
a comparative study are the Elman, [11], Feedforward
[12], Radial Basis [13] and Hopfield [14]. MATLAB-6.5 ™
(Release 13, Mathworks) was used for carrying out all the
investigations. In the case of the Feedforward and Elman
networks, the number of hidden layers and number of
nodes in the hidden layer were also varied in order to
observe the variations in the network outputs. The main
reasoning to choose casein whey as the feed for RDMM is
because of the complex nature of the protein mixture; it
offers an additional dependence on solution pH, which
affects the permeate flux. The alteration of the pH was
found to have a strong and complex relation with
permeate flux because of its relation with isoelectric point,
as well as due to some conformational changes (iso-
merization), mostly of $-lactoglobulin, a major consti-
tuent of whey proteins. The treatment objective in this
study was separation and purification of whey proteins
from casein whey. For this, we adopted a two-stage
methodology, pretreatment (centrifugation and micro-
filtration), followed by UF. We used a rotating disk
module, a high shear device for minimizing concentration
polarization and consequent fouling. It is expected that if
the proposed ANN could result in good prediction for this
complex feed stream and can account for the variation of
pH, transmembrane pressure (TMP) and membrane rota-
tion, then it could be possibly treated as good validation.

2. Theoretical

The main purpose of this study is to make a com-
parison between different neural networks. Two different
types of networks were investigated. One used a super-
vised learning algorithm and the other an unsupervised
learning one. The Hopfield Network is an example that
uses unsupervised learning and the Feedforward Net-
work is based on supervised learning.

The basic network structure (Fig. 1) for any ANN is the
Feedforward Network with a back-propagation gradient
descent algorithm. Although the error back-propagation
algorithm (EBP) [15] has been a significant milestone in
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Fig. 1. Schematic representation of an Artificial Neural Net-
work, which resembles a feedback system.

neural network research, it has been known as an
algorithm with a very poor convergence rate. The most
recent development occurring in this feedforward net-
work solution is optimization of the network by the
Levenberg–Marquardt optimization technique. It is
widely accepted as the most efficient one in the sense of its
accuracy level [19].

Another type of network structure in ANN, called
Recurrent Networks, nowadays is drawing lot of interest.
It is a kind of network which exhibits the same input–
output behavior [20]. Two important networks in this
category are Elman and Hopfield. The Elman Network is
a two-layer back-propagation network with the addition
of the feedback connection from the output of the hidden
layer to its input. The Elman Network can be considered
in such a fashion that the input layer is as if divided into
two segments. The name of this extra segment is called a
context unit. It is connected with the hidden layer with a
one-to-one node connection [21]. So the number of hidden
units is equal to the number of context units. Hopfield
neural networks have been widely used as associative
memory or to solve optimization problems [22]. There are
many versions of the Hopfield networks [14,23–26].
Basically the Hopfield Network follows a feedback
mechanism. The network is recursive in that the output is
fed back as the input once the network is in operation. 

A radial basis function (RBF) [27] is another type of
feed-forward ANN. Typically in an RBF network, there
are three layers: one input, one hidden and one output
layer. In RBF networks, one major advantage is that if the
number of input variables is not too high, then learning is
much faster than other type of networks. However, the
required number of the hidden units increases geo-
metrically with the number of the input variables. It
becomes practically impossible to use this network for a
large number of input variables.

3. Experimental

A series of UF runs were performed with an objective
to obtain the permeate flux as a function of different

operating conditions dominating in UF of casein whey
using a rotating disk membrane module. The major
parameters considered were membrane rotation speed,
TMP and solution pH. 

3.1. Materials

Casein whey was obtained from local sweet-meat
industries situated in and around Kolkata, India. The pH
of the raw casein whey varied from 3 to 4, depending
upon the quantity of excess acid present in the whey
resulting from acid caseination. The sweet-meat indus-
tries, in most of the cases, used hydrochloric acid or its
equivalent for casein precipitation. Coomassie Brilliant
Blue (G-250) for Bradford protein assay (Pierce
Biotechnology, Rockford, USA), was obtained through
Hysel India (New Delhi, India). Sodium hypochloride
(NaOCl), sodium hydroxide (NaOH) (used for membrane
cleaning) and ethanol (used for membrane storage) were
purchased from Merck (Mumbai, India).

3.2. Feed pretreatment

In order to prevent any possibility of membrane
fouling, the suspended casein particles and colloidal
matter (mostly fat) were removed by centrifugation
followed by microfiltration. Centrifugation was carried
out in a research centrifuge model TC 4100D (Remi,
Mumbai, India) with a speed of 12,500 rpm, giving a
relative centrifugal force of 156.8 N for a period of 30 min.
After centrifugation, the sample was subjected to micro-
filtration (MF) using an all glass vacuum filtration unit
(Sartorius, Göttingen, Germany), fitted with an oil-free
portable vacuum pump (Sartorius, Göttingen, Germany,
model ROC 300 with moisture trap), with a polyether
sulfone (PES) membrane (0.047 m diameter, pore size 0.45
×10!6 m) as the filter media. The permeate from the MF
was adjusted for pH by adding calculated amount of 1 N
hydrochloric acid or 1 N sodium hydroxide, as required,
to produce the feed for the subsequent UF run. The
isoelectric point of casein whey was 4.6 [28]. Accordingly,
the pH was set to 2.8 and 5.5 to facilitate the study of UF
performance below and above the isoelectric point of
casein whey.

3.3. Membrane and module

UF of pretreated casein whey was carried out batch
wise in a stirred rotating disc module using the PES mem-
brane. The module, made of SS316, was manufactured by
Gurpreet Engineering Works (Kanpur, India) as per the
specified design. The module (Fig. 2) was equipped with
two motors with speed-controllers to provide rotation of
the stirrer (not used in this study) and membrane housing.
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Fig. 2. Schematic diagram of the experimental set-up.

A digital tachometer was used to measure the rota-
tional speed of the membrane. The set-up was equipped
with an arrangement for recycling the permeate to the
feed cell to run it in continuous mode with constant feed
composition. The later mode was not investigated in this
study. The module was also equipped with an outside
water-jacket, through which provision for water circu-
lation was available. An adequate mechanical sealing
mechanism was provided to prevent leakage from the
rotating membrane assembly up to a pressure of 1 MPa.
An air compressor was used to provide compressed air for
pressurization of the cell. An intermediate air reservoir
fitted with on-off controller based on pressure sensor was
provided which maintains the pressure within reservoir
between 1–1.2 MPa. A differential pressure regulator was
used to set the pressure at the desired level within the
module. The complete schematic diagram of the rotating
disk module set-up is given in Fig 2. The PES membranes
(flat disk of 0.076 m diameter) of 30 kg/kmol molecular
weight cut-off (MWCO) were imported from Millipore
(Bedford, USA) through its Indian counterpart (Millipore
India). The flat-sheet membrane operable in a pH range of
1–14 has an actual diameter of 0.076 m, whereas the
effective diameter was 0.056 m.

3.4. Membrane compaction and water run

Prior to experiments, the membrane was subjected to
compaction for about an hour with ultra-pure water at a

pressure of 0.9 MPa, higher than the highest operating
pressure to prevent any possibility of change of mem-
brane hydraulic resistance during UF. Once the water flux
becomes steady with no further decrease, it was con-
cluded that full compaction of the membrane has taken
place. The membrane was washed thoroughly with
distilled water after every run with casein whey to remove
any deposited fouling layer, which was followed by water
runs to determine the extent of fouling. The water fluxes
obtained from such studies were found to be within 2% of
initial water flux, thus showing minimum fouling result-
ing from the proposed separation scheme. The ultra-pure
deionised water used in this study was obtained from the
Arium 611DI ultrapure water system (Sartorius, Göttin-
gen, Germany). The feed to this Arium 611DI was taken
from a usual laboratory distillation unit. 

3.5. Methodology

Experiments were carried out batch wise in the
rotating disc membrane module at different operating
conditions, starting each time with an initial pretreated
feed volume of 350×10!6 m3. The temperature within the
cell was maintained at 30EC using water circulation
through outside jacket on the module (not shown in Fig. 2)
from a constant temperature bath (Julabo constant tem-
perature batch/circulator, model FK30/31-ME). The
objective of this study was to get complete dependence of
flux on solution pH, membrane rotation speed and TMP.
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Accordingly, the solution pH was varied at 2.8 and 5.5
and the TMP was fixed at 0.4, 0.5, 0.6, and 0.7 MPa. The
membrane rotation speed was set at 0 (fixed membrane),
300 rpm and 600 rpm. The membrane rotation speed was
controlled through a speed controller, regulating the
power supply to motor. The membrane rotational speed
was checked with the help of a digital tachometer working
on stroboscopic principle during experiment. All these
constituted total 24 runs, each of nearly 30 min duration,
about 60% of which have been used for training of
different networks and the remaining ones were used for
model validation. After each experiment, the membrane
was thoroughly washed for 20 min under running water,
then soaked in deionised water for 6 h and then again
thoroughly washed for 20 min. In each case, the water flux
was regained by about 98% of its original value, suggest-
ing the cause of flux decline to be either osmotic pressure
limited or due to a reversible fouling layer.

4. Results and discussion

Using mainly membrane separation of casein whey,
86% of valuable proteins are recovered from the discarded
water from the sweet-meat industries, which can be used
for different purposes later on. Another side of this treat-
ment scheme is that BOD and COD values are reduced by
almost 99% of their initial values, which are well within
the permissible limit of Pollution Control Board and can
be discarded safely. The main purpose of this paper was a
thorough comparative study of whey flux with different
types of networks and to reach a conclusion on the
performance of different networks. The Feedforward
Network is the simplest network in ANN. The Elman
Network resembles both the characteristics of the Feed-
forward Network and a recurrent network. A comparative

study of these two networks is given in Table 1. The mean
square error (MSE) [29] comparison curves for these two
networks are shown in Fig. 3. From the analysis of Table 1
it is observed that for learning rate 0.000044 and
momentum constant 0.60, the MSE for the Elman network
is lowest, i.e., 9.67846×10!6 and the MSE for the Feed-
forward Network is 9.95536×10!6 at the cost of the number
of epochs. Again, for the Feedforward Network the
minimum value for MSE is obtained for a learning rate of
0.000020 and a momentum constant of 0.10. In this case
the MSE is lowest and the number of epochs is 1027,
which is also less tthan he number of epochs obtained for
the previous case where the Elman Network is optimized.
But we are compromising with the learning rate and
momentum constant value which will guide the speed of
the simulation process  towards the minimum error value.
Thus, to make this simulation process fast, we have
considered the learning rate value of 0.000044 and
momentum constant of 0.60 where the MSE that is
obtained for the Elman Network is the lowest between all
the MSEs that are obtained for any kind of network. Thus
it can be considered for the optimum network parameters
for this system. With these parameters a comparative
study was made between the Elman and Feedforward
Networks, shown in Fig. 4. Convenient ±10% error lines
are drawn. If the points that are obtained are within this
margin of error, then it can be concluded that the network
is well simulated. From this curve, it is very clear that the
Feedforward Network was not optimized for a learning
rate of 0.000044 and momentum constant of 0.60.

In case of the Elman network the basic parameters for
simulating the network are learning rates, momentum
constants and number of nodes in the hidden layers. The
basic difference between the Elman and Feed Forward
Networks is that in case of the Elman Network, the

Table 1
Comparative study of MSE and Epoch obtained for the Elman and Feedforward Networks with 100 nodes in the hidden layer and
with the traingdx training function

Learning rate Momentum constant MSE × 106 Epoch

Elman Feedforward Elman Feedforward 

0.000044 0.60 9.67846 9.95536 3871 345
0.000020 0.10 9.81543 9.04807 6109 1027
0.000020 0.20 9.98809 9.98467 6353 2047
0.000020 0.23 9.91746 9.98007 3133 3809
0.000020 0.25 9.88521 9.98096 3732 5530
0.000020 0.15 9.97764 9.98489 4698 4754
0.000020 0.14 9.98617 9.98933 6049 1755
0.000010 0.10 9.94225 9.94809 5521 2075
0.000015 0.10 9.91343 9.91230 6643 1710
0.000020 0.60 9.93943 9.95281 3128 3384



C. Bhattacharjee et al. / Desalination and Water Treatment 2 (2009) 170–183 175

Fig. 3. Comparative study of MSE and Epoch obtained for the Elman and Feedforward Networks with 100 nodes in the hidden
layer and with the traingdx training function.

Fig. 4. Comparative study between Elman Network, Feedforward Network and experimental points.

output from the first layer is supplied as feedback to the
first layer again. Thus the first layer of the Elman Network
has a recurrent connection. The delay in this connection
stores values from the previous time step, which can be
used in the current time step. Thus even if two Elman
networks, with the same weights and biases, are given

identical inputs at a given time step, their outputs will be
different. The network is trained for the data set given in
Table 2. The transfer function that is used for the hidden
layer is tansig and the transfer function that is used for the
output layer is purelin; the traingdx function is used to train
the network.
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Table 2
Network input parameters and target training values

pH TMP
(MPa)

rpma Target valuesb for
network training

2.8 0.4 0 68.74 
5.5 0.4 0 56.15
5.5 0.5 0 59.20 
5.5 0.5 100 69.04 
2.8 0.5 0 81.47 
2.8 0.5 100 97.53
2.8 0.4 100 79.71

aIndicates membrane rotation. 0 = no rotation; 100 = rotation.
bIndicates whey flux (×106 m3.m!2.s!1) obtained experimentally
at these specified conditions.

The following parameters that are set for this network:
number of nodes: 100, learning rate: 0.000044, momentum
constant: 0.60, and MSE: 0.00001. Interestingly, what we
found is that if the network is given the same input and
simulated weights and biases, then there is a chance that
the network will respond differently. This has happened
because of the changed feedback state. For the above
parameter set-up, it was found that at the initial moment
the network did not converge and the MSE calculated for

this case was equal to 59.1958. But for the second time
when the network was assigned to obtain weights and
biases, the network converged and for this case the
network converged with MSE 9.67846×10!6. From this it is
clear that the network differs with the feedback state.
Fig. 5 shows the comparison between two training itera-
tions. Fig. 6 shows the comparative study of whey flux for
different learning rates and momentum constants.

The above simulation made for the Elman and Feed-
forward Networks is based on a single hidden layer.
Figs. 7 and 8 show the performance of the Feedforward
and Elman Networks respectively on the basis of two and
hidden layers, respectively. Fig. 9 shows a comparative
study of Elman and Feedforward networks for optimized
network condition with two hidden layers. In this case,
the simulated values were chosen for which the network
showed small MSE. For the Elman Network the number of
nodes in the first hidden layer was taken as 75 and the
number of nodes in the second hidden layer was taken as
25.

In the case of the Feedforward Network two types of
training functions were used. One was traingd and the
other traingdx. In the case of the Feedforward Network for
a single hidden layer, the number of nodes varied at 100,
50 and 90. It is found that the network predicted the flux
near to the experimental values at learning rate equal to

Fig. 5. Curve shows that even with assigning the same layer weights and biases, the network output can be different. Here First
Training shows the initial training and Second Training shows the training after making an assignment to the layer weights and
biases.
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Fig. 6. Curve shows the comparative study of whey flux simulated by the Elman Network for different momentum constants
and learning rates.

Fig. 7. Difference between simulated points obtained in the Elman Network for two hidden layers keeping different numbers
of nodes in the respective layers. In the tile, the numbers within the third bracket show the number of nodes in the hidden layer;
e.g., [25,75]: number of nodes in first hidden layer is 25, number of nodes in second hidden layer is 75.
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Fig. 8. Difference between simulated points obtained in the Feedforward Network for two hidden layers keeping different
numbers of nodes in the respective layers. In the tile the numbers within the third bracket show number of nodes in the hidden
layer.

Fig. 9. Comparative study of Elman Network and Feedforward Network for the two hidden layer system.
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Fig. 10. Comparative study of various simulated points for Feedforward Network with the traingdx function and different
number of nodes in the hidden layer and learning rates.

0.00599 taking training function traingdx for 100 nodes in
the hidden layer. For 50 and 90 nodes in the hidden layer
we did not obtain any results close to the experimental
values, but for 50 nodes in the hidden layer we obtained
simulated values quite near to the experimental values for
a learning rate equal to 0.00003 and for the training
function traingdx. For 90 nodes, the values were con-
sidered for a learning rate equal to 0.0051 with the same
training function traingdx. The comparative curve is
shown in Fig. 10. For 90 nodes the MSE was equal to
0.0046218. For 50 nodes the MSE was equal to 9.92735×
10!6 and that for 100 nodes was 9.97659×10!6. Epochs taken
for these three cases were 619,802 and 294 respectively.

Another training function that was used for this
Feedforward Network is traingd, but it is found that this
training function was not going to be satisfactory. The
simulated values obtained using this training function are
quite far from the experimental points.

In the case of the RBF network, two types of Radial
basis functions, newrbe and newrb, were used to train the
network. The basic difference between these two types of
functions is for the first case, neurons in the hidden layer
are generated in equal number with input vectors. For the
second case the neurons are generated with process. How
far the simulation is going to be accurate depends on a
constant in the Radial Basis Network called SPREAD.
Here fixing goal, i.e. MSE was set equal to 0.002, SPREAD

was taken as adjustable parameter to find out for which
SPREAD the sum square error (SSE) is minimal. Different
values of SPREAD were taken (1, 2, 3, 4 and 5).

It was found that SSE was minimal for SPREAD equal
to 4. Fig. 11 shows the variation of the flux with different
SPREADs. It gives a vivid picture of how the simulated
values were close enough to the target value for SPREAD
= 4. Therefore, this SPREAD is that value for which the
input will have a maximum overlapping region. As
previously stated, with the newrb function of the Radial
Basis Network, the radbas neuron is generated online. If
that MSE is reached below the set goal value (here 0.002)
or the number of added neurons exceeds the default
number (25) of the radbas neuron, then the generation of
the network will stop. From the output of the generated
network, the number of radbas neurons was found to be 6,
whereas as per exact design of the Radial Basis Network
the number of radbas neurons would be exactly equal to
the number of input vectors. Here in the following matrix
called “layer”, the layer weight was initially assigned
between different radbas neurons and input nodes in the
network. It was observed that initial layer weights are
equal to the supplied input values. Here six radbas neurons
were formed instead of seven radbas neurons (supplied
input data set). This is exactly what is featured by the
newrb function:
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Fig. 11. Deviations of the simulated values by the newrb network from the target values for different SPREADs.

layer =    bias = 

2.8200    5.0000  100.0000

2.8200    5.0000         0

2.8200    4.0000  100.0000

2.8200    4.0000         0

5.5500    4.0000         0

5.5500    5.0000         0
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 
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 
 

 0.2081     0.2081     0.2081     0.2081     0.2081     0.2081
T

From the bias values it is clear that biases were set as per

the formula . The number of initial0.8326
0.2081

4
 b

layers and biases gives an idea about the number of radbas
neurons that can be in the radbas layer. Customarily, the
algorithm of the radial basis is that the radbas neurons are
formed equal in number to the number of input vectors.
So it was expected that the number of rows for biases will
be exactly equal to the number of input vectors. In this
work the simulation was completed with six radbas
neurons.

In the first case, when the first radbas neuron was
created, the layer weight was assigned equal to the
following values of pH, TMP and rotational speed: pH =
2.8, TMP =0.5 MPa, rotational speed = 300 rpm. In the case
of the Radial Basis Network with the newrbe function, the
network generates the number of radbas neurons exactly

equal to the number of input vectors. For the problem
under consideration, we had seven input vectors, as
follows:

p = 

*

#

$

2.80    5.50    5.50   5.50     2.80   2.80    2.80  

4.00    4.00    5.00   5.00     5.00   5.00    4.00  

   0         0         0    100.0      0     100.0   100.0  

 
 
 
 
 

where * is pH, # is TMP (MPa) and $ is the rotation
indicator. Here SPREAD was taken as 2.42, and therefore

the bias for the radbas was set up as .
.

.
.

0 8326 0 344
2 42

b  

The initial weights for the radbas neurons were set up
numerically equal to the input vectors,
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Fig. 12. Accuracy of the network. (Hopfield Network was not at all near to the points obtained from the experiments.)

Fig. 13. Comparative study of predicted whey flux with a different network architecture.
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Fig. 14. Comparative study between whey flux obtained
experimentally and predicted whey flux with the Radial Basis
Network.

Fig. 15. Comparative study between whey flux obtained
experimentally and predicted whey flux with the Radial Basis
Network.

Table 3
Absolute average deviation (AAD) for different networks

pH TMP
(MPa)

rpm AAD for Feedforward
Network (%)

AAD for Radial Basis
Function Network (%)

AAD for Elman
Network (%)

AAD for Hopfield
Network (%)

2.8 0.4 0 15.80 6.90 28.50 41.8
5.5 0.7 0 25.20 7.30 28.50 8.0

So it implies that the number of radbas neurons are exactly
equal to the number of input data set.

Now in case of Hopfield Network the result that we
obtained are not as accurate as we are getting for Radial
Basis Network. The graphical results after simulation with
Hopfield Network are shown in Fig. 12. 

It is evident that among all the networks, Radial Basis
Network reproduces experimental points with highest
accuracy. Fig. 13 gives a comparative study of all the
networks. Here the values of the network are taken for
optimized network parameters. The figure vividly shows

the idea of the network which is going to produce the
most accurate estimation of experimental values. So from
the above discussion, it could be assessed that the Radial
Basis Network predicts almost accurate flux values for the
different operating parameters under consideration.

Now it would be interesting to see whether this
network can predict the actual flux decline profile or not.
For this purpose, the Radial Basis Network with function
newrb and with SPREAD = 4 were taken to predict the flux
decline profile. Figs. 14 and 15 show a comparative flux
decline profile between the experimental values and the
network predicted values for operating conditions of pH=
2.8, TMP = 4 and pH = 5.5 and TMP = 7, respectively,
without membrane rotation. It was found that the profile
is almost identical with the profile that we obtained
through the experiment. 

Further, to elucidate the nature of deviations between
the simulated and experimental values as obtained from
different ANNs, absolute average deviations obtained
from all such networks considered in this study under
fixed operating conditions (pH = 2.8; TMP = 0.4 MPa;

2.800    4.0000         0
5.500    4.0000         0
5.500    5.0000         0

layer= 5.500    5.0000  100.0000
2.800    5.0000         0
2.800    5.0000  100.0000
2.800    4.0000  100.0000

 
 
 
 
 
 
 



 




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rpm = 0 and pH = 5.5; TMP = 0.7 MPa; rpm = 0) are shown
in Table 3. It is evident that accurate prediction of UF flux
under this case paved the way for considering the Radial
Basis Network as an optimized network for simulating
complex UF behaviour.

5. Conclusions

The objective of this paper was to find optimum ANN
architecture for predicting whey flux for UF of casein
whey, a complex protein mixture in a RDM module,
having complex hydrodynamics. To accomplish this,
different neural network architectures of feedback and
feedforward types were considered. It was found that
among different networks with varying network para-
meters, the Radial Basis Network is the best network that
can simulate the flux with the highest accuracy. Moreover,
the experimental runs taken for network training and
validation were based on whey protein, a complex solute
mixture, whose behaviour also depends on solution pH,
among other parameters. In fact, absolute average
deviations as calculated using 40% of the total data set for
validation were found to be 6.9% at pH = 2.8 and 7.3% for
pH = 5.5. Accordingly, it is concluded that this network
can be considered as a model network for predicting
fluxes for UF in a RDM module. 

6. Symbols

JV — Permeate volumetric flux, m.s!1

t — Operation time, s
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