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A B S T R A C T

The thermodynamics of irreversible processes is a useful tool for understanding and quantifying
transport phenomena in dense membranes where the membrane structural parameters are not
essential. Because of the existence of driving forces, the components within the solution are
transported from one side of the membrane to the other by diffusion. The aim of this paper is to
provide basic equations for reverse osmosis derived from a set of more general equations established
for membrane transport which relates fluxes and driving forces, based on non-equilibrium
thermodynamics.
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1. Introduction

The development of effective techniques for separating
liquid and gaseous mixtures on an industrial scale has
gained increased attention because of raised expectations
concerning lower economic costs and greater environ-
mental sustainability of separation processes. Many of
these processes employ membranes technology. A mem-
brane is a selective barrier between two solutions, one the
feed solution (upstream side) and the other the permeate
solution (downstream side). Separation is achieved
because the membrane transports one component from
the feed solution more readily than any other components.

The driving force exerted on each component of a
mixture is the gradient of the electrochemical potential
across the membrane. The electrochemical potential
direction causes each component to move with an
independent velocity from the feed to the permeate side;
therefore, in the steady state, the compositions of the feed
and permeate stream differ from each other.

*Corresponding author.

In the case of desalination, membranes with dense
non-porous surface layer 0.1–5 µm thick, and are generally
supported by a synthetic polymeric material comprising a
porous backing 100–500 µm thick [1,2]. The thin top layer
is primarily responsible for the separation effect, while the
supporting layer has little or no influence on the
separation process. The supporting layer functions as a
mechanical backing for the active membrane surface layer.

With membrane systems, two classes of membrane
filtration are shown in Fig. 1. In dead-end filtration two
streams are presented, the feed and permeate streams.
This results in a constant concentration of each component
over the surface of the membrane on the feed side as well
as on the permeate side. In cross-flow filtration the
incoming flow or feed stream is split into two streams, i.e.,
into the retentate or concentrate stream and into the
permeate stream. The concentrate or permeate stream
may be the product. The basic flow principle of cross-flow
filtration is represented in various membrane separation
modules, such as plate and frame modules, tubular
modules, spiral-bound modules and hollow-fibre
modules [1–3].
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(a)

(b)

Fig. 1. Dead-end filtration (a) and cross-flow filtration (b).

When a semi-permeable membrane separates two
solutions of the same solvent at different solute concen-
trations, the solvent flows from the more dilute to the
more concentrated solution (osmosis) due to different
values of the chemical potential on each solution. The
increasing hydrostatic pressure in the concentrated
solution produces a corresponding osmotic pressure
difference in the solutions [1,2].

If a pressure greater than osmotic pressure is applied
to the concentrated solution, the process of osmosis can be
reversed. In which case, the solvent is transported through
the membrane from the more concentrated solution into
the less concentrated solution. This process is called
reverse osmosis (RO). Generally, RO employs spiral-
bound modules and is mainly applied to dilute aqueous
solutions to produce purified water or to concentrate a
solution by removing water. In this instance, the top layer
of the membranes is made on a hydrophilic material
(cellulose acetate, composite aromatic polyamides or
polysulphones). In RO, the membrane is in contact with
the liquid phase. In the case of desalination of sea water,
pressures in the range of 80–100 bar are applied to the feed
side, while in the case of brackish water the pressures
range from 15 to 40 bar. In both cases, the permeate side is
kept at ambient pressure.

The basic equations of RO have been established
according to different theoretical models, including the

solution-diffusion model and the finely porous capillary
model [1,4]. The aim of this paper is to provide basic
equations based on the thermodynamics of irreversible
processes. The RO equations are derived from more
general equations for membrane transport, which relate
fluxes and driving forces [2,5–7]. The results are very
useful in the study of electrokinetic phenomena [5,6].

2. Theory

2.1. Transport equations in the thermodynamics of irreversible
processes

In the following discussion flux equations derived
from the thermodynamics of irreversible processes (TIP)
consider the membrane as a black box, so no information
is required about the structure of the membrane system. In
irreversible processes, free energy is dissipated continu-
ously while entropy is increased internally, so that
entropy production can be expressed as the summation of
the product of conjugated fluxes (Ji) and forces (Pi) [6,8]:
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The dissipation function M is defined by the product of
thermodynamic temperature T and entropy production:
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The flows refer not only to the transport of mass but also
to the transfer of heat and electrical current. These
parameters are usually expressed relative to the fixed
membrane as a reference frame. Not far from equilibrium,
it can be assumed that each flux is linearly related to the
forces
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where Lij are the phenomenological coefficients, called
cross or coupling coefficients when i…j, which, according
to Onsager [6,8], are equal ( ) and may be eitheri j j iL L
positive or negative.

Before dealing with expressions for the fluxes of
different components across membranes, it is necessary to
introduce the electrochemical potential [6], which, for a
charged species i in a liquid phase, is given by 

(4)   , , , ,i i i i iT P T P z F      

where zi is the valence, F is the Faraday constant (96,500
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coulomb/mol), N is the electrical potential and
 is the chemical potential: , ,i iT P 

(5)     , *, , lno
i i i i iT P T RT a V P P      

assuming that the partial molar volume of component i,
Vi, is independent of the pressure P and P* being the
standard pressure. The activity of the i component in the
liquid mixture is expressed as ai = (iXi  where Xi is the mole
fraction and (i is the corresponding activity coefficient (for
ideal solutions (i equals 1). The chemical potential of
component i,  in its standard state is a function of,o

i


temperature only.
The driving forces across a membrane are the

electrochemical potential gradients so if the membrane
thickness is d, we can write

(6) lni i i i m id V P z F RT a d       

where )Nm is the electric potential difference across the
membrane (membrane potential).

2.2. Basic equations for the transport in membranes

We shall consider the case in which a homogeneous
ion-exchange membrane of uniform thickness separates
two well mixed aqueous solutions of a binary electrolyte
at equal temperature and different concentrations, with
gradients of applied electric potential and pressure. Apart
from the membrane, there are three components: two
ionic species of the binary electrolyte (1, cation; 2, anion),
and the solvent (3) (in our case water). In this case, n = 3 in
Eq. (3) and there are three flux equations and nine
coefficients.

For selective membrane, positively charged (anion
exchange membrane), the anions will be transported more
easily and so inside the membrane there will be an excess
of anions over cations, and therefore the anion flux
through the membrane will be greater than the cation flux:
J2 > J1. Thus, we can write

(7)* **
2 2 2J J J 

where J2* is the excess of anionic flux compared with the
salt flux, due to the electric charge of the membrane and
J2** is the anionic flux in correspondence with the salt flux.

For a generic binary electrolyte the stoichiometric
formula is

(8)v v z zA C A C
   



where A and C represent, respectively, anion and cation,

and vi (i = + or !) are their stoichiometric numbers in the
formula, according to the valences zi (i =+ or !). So, every
molecule of salt transported through the membrane
implies the transport of z!ion-gram of the anion and z+
ion-gram of the cation. The electric neutrality of the salt
requires that

(9)0z z     

For the salt flux, Js:
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and so, for the total anionic flux
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and, according to the previous expressions for the
different fluxes, Eq. (2) can be rewritten as
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where we have taken into account the electrically neutral
character of solvent 3, so that :̃3 = :3. In addition, the
electric neutrality of the salt leads to
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where µs is the chemical potential of the salt.
Now, it must be taken into consideration that the net

current through the membrane is due only to anions
whose flux excess J2* (ion-gram per unit area and time)
multiplied by the charge of the ion-gram (z_F) gives the
electric current density

(15)*
2I z FJ

So, the term corresponding to J2* in Eq. (13) becomes
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On the other hand,

(17)
(2)
2

2 (1)
2

ln m

a
RT z F

a    

where the superscripts of the anion activities refer to
solutions 1 and 2 in contact with the membrane. The
difference of pressure term has not been taken into
account, due to the small value of the solute partial molar
volume. The membrane potential )Nm measurement may
be accomplished by anion selective electrodes and there-
fore a nernstian contribution [9] of the electrode potential
)N; is incorporated in the direct measurement )N so that
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and Eq. (16) gives

(19)*
2 2J I  

By combining Eqs. (13), (14) and (19), we can write

(20)3 3s Sd T J I J     

which shows that the entropy production in our system, in
the presence of an ion-exchange membrane, is the sum of
the solvent flux, current flux and salt flux multiplied by
their conjugated driving forces ()µs, )N and )µ3,
respectively).

The last equation can be rewritten in an alternative
form, introducing a new set of driving forces, such as the
electric potential difference ()N), the hydrostatic pressure
difference through the membrane ()P) and the osmotic
pressure difference ()A).

The difference in chemical potential for the water in the
membrane is 
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which reduces to

(22)3 3( )V P   

where )P = P(2)!P(1), and )A is the difference of osmotic
pressure between the solutions on both sides of the
membrane [1,2,6], given by
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In the case of diluted solutions, )A = RT)CS, with
 being the difference in solute molar con-(2) (1)

S S SC C C  
centration through the membrane.

Using Eq. (5), the chemical potential difference may be
expressed as 
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Hence, the chemical potential difference for the salt can be
written as 
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where VS = v+V1 + v!V2 is the partial molar volume of the
salt, whose activity is given by

(27)( ) ( )Sa a a  
 

When we are dealing with diluted solutions, the activity as

is equal practically to the molar concentration, Cs, and so
in this case
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Alternatively,  can be written by defining a mean( )c
S

logarithmic molar concentration,  asSC
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When the concentrations in solutions 1 and 2 are very
close, then  and so(2) (1) 1S SC C 
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which, from Eq. (29), finally gives
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This result allows us to affirm that, for ideal solutions with
close concentrations, the mean logarithmic concentration
is the arithmetic mean of the concentrations for the
solutions on both sides of the membrane.

From Eqs. (20), (22), (28) and (29), it can be seen that
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The total volume flux, Jv, is defined as
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and so Eq. (32) becomes
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The solute speed vs in the membrane frame is given by
 and the volume V for diluted solutions is equal to /S SJ C

the partial mole volume number of solvent multiplied by
its number of moles (n3), so

(35)3 3 3 3 1n V V C V  

where C3 is the molar concentration of solvent, and the
following equation can be derived
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where v3 is the speed of the solvent with respect to the
membrane, and therefore JD is the diffusive flux defined as
the relative speed of the solute with respect to the solvent.
Introducing the last equation in Eq. (34), it may be
expressed as

(37) D Vd T J I J P    

and according to Eq. (3), the corresponding phenomeno-
logical equations will be:
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2.3. Basic equations for reverse osmosis

In the case of non-charged membranes, )N = 0 and
I = 0, so that Eqs. (37) and (38) reduce to
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with the following restrictions concerning the magnitude
of the coefficients [8]:

(40)2
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reducing the number of coefficients to three and indi-
cating that, even if there is no difference in hydrodynamic
pressure ()P = 0), there is still a volume flux and, although
the solute difference concentration is zero ()A = 0), there
is still a solute flux when )P … 0.

We can establish an alternative formulation for the
phenomenological Eqs. (39) to deal with diluted solutions.
From the expressions for the volume and diffusive fluxes
Eqs. (33) and (36), it can be seen that 
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For diluted solutions  , and according to Eq. (39),1S SC V 
we obtain
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This equation, together with the first one in Eq. (39), offer
a new formulation to describe the phenomenological
behaviour of the membrane system:
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where the fluxes corresponding to the volume and solute
can now be directly measured.



J.A. Ibáñez-Mengual et al. / Desalination and Water Treatment 2 (2009) 287–294292

Under certain conditions, this new set of equations can
be modified to adopt a more simplified form. To under-
take this modification, we shall take into account that a
strictly selective membrane should only allow the
transport of solvent, rejecting all solutes, so that Js = 0 for
any value of )P and )A. Therefore, from Eq. (42), we can
state that

(44)11 12
11 22

22 12
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L L
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L L

 
   

where Lp is the hydrodynamic permeability or water
permeability of the membrane. Introducing this new
parameter in the first Eq. (43) gives

(45) V PJ L P  

and when Jv = 0, it follows that
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A real membrane always allows the transport of certain
amounts of salt, in which case the so-called reflection
coefficient or Stavermann coefficient [7], F , can be defined
by
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This coefficient is a measure of the selectivity of the
membrane and usually has a value of between 0 and 1. For
an ideal semi-permeable or permselective membrane, F =
1 and there is no solute transport, while for a not com-
pletely semi-permeable membrane, F <1 and F = 0 in the
case of no selectivity.

The reflection coefficient can be interpreted with
respect to the speeds of the solute (vs) and the solvent (v3)
by defining it as follows:

(48)
3

1 Sv
v
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so that F = 1 when vs = 0 and F = 0 if vs = v3. For example,
the solute and solvent are transported with the same
speed and the membrane shows no permselectivity and
therefore no rejection of the solute takes place. Whatever
the case, when vs <v3, then F <l, while that F <0, if vs >v3,
implies a transport rate of solute higher than that
corresponding to solvent and indicating the presence of
electric effects associated to the charge of the membrane.

The introduction of the reflection coefficient in Eq. (43)
leads to the next expression for the volume flux:
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and for the salt flux
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which finally gives
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T is the osmotic permeability or solute permeability and is
given by
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(52)

Eq. (52) shows that the solute flux is formed by two
contributions: one associated with the volume flux and the
other associated with the osmotic pressure difference.

Eqs. (49) and (51) indicate that transport across a
membrane is characterised by three transport parameters,
which can be determined experimentally. The hydro-
dynamic permeability Lp can be obtained from Eq. (49) by
experiments with pure water because in this case the
osmotic pressure difference is zero and there is a linear
relationship between the hydrodynamic pressure, )P, and
the volume flux, Jv, while Lp represents the slope of the
corresponding flux-pressure curve. The solute perme-
ability T and the reflection coefficient F can be obtained
from Eq. (51), which is rewritten for diluted solutions in
the form:

(53) 1S S
V

S S

J C
J RT

C C
  

 

In this way, by plotting JS /)CS vs. , the soluteS SC C
permeability T may be obtained from the ordinate
intercept and the reflection coefficient from the slope of
the fitting straight line.

For an ideal semi-permeable membrane, Eqs. (49) and
(51) become
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(54)
 V P

S

J L P

J

  



The last equation is usually written as

(55) (2) (1)S
S S S

D
J K C C

d
 

where K is a characteristic coefficient of the system and Ds

is the solute diffusion coefficient across the membrane,
with a thickness d.

Eqs. (54) and (55) are used for membranes whose
reflection coefficient is slightly lower than 1 and allow us
to make predictions about the fluxes Jv and Js across the
RO membranes. As can be seen, Jv increases linearly with
the applied pressure )P and takes a value of zero when
)P = )A (osmotic equilibrium). Usually, under common
working conditions, the salt flux is independent of the
pressure difference established across the membrane.
Fig. 2 illustrates this behaviour for a high-performance RO
membrane (FT30, FilmTec), used with water containing
3.5% sodium chloride (which it is often used as a model
for seawater) where the water flux product and the salt
flux are shown vs. the applied pressure.

2.4. Two RO operative parameters

Permeate recovery rate and salt rejection — Permeate
recovery, also called the conversion rate, is one of the most
important parameters in the design and operation on RO
systems [9], and can be defined in terms of the product
water flow rate (Qv = JV@A where A is the active area of the
membrane) and feed water flow (Qf), as follows:

Fig. 2. Water (!) and salt (") fluxes vs. applied pressure for
high-performance RO membrane FT30 (Film.Tec) in water
containing 3.5% sodium chloride.

(56)100 100v v

f v c

Q Q
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Q Q Q

   
          

where Qc = Qf = Qv is the concentrate flow rate.

On the other hand, the salt rejection coefficient of the
membrane, S, shows the membranes capacity for rejecting
salt and is defined as a percentage [10], as follows:

(57)
(2)

(1)(1 ) 100 1 100S

S

C
S SP

C

 
      

 

where SP is the salt passage defined as the ratio of the
concentration of salt on the permeate side of the
membrane relative to the average feed concentration. For
an ideal permselective membrane Cs

(2) = 0, and so S =
100%, while for a completely non-selective membrane
Cs

(2) = Cs
(1) and so S = 0. The volume flux Jv increases with

the applied pressure, )P, while the salt flux remains
unchanged; Cs

(2) decreases with )P and consequently S
increases. Salt rejection coefficient is an important perfor-
mance parameter in RO membranes since it determines
the suitability of given membranes for various appli-
cations [10].

3. Conclusions

We report on the deduction-based non-equilibrium
thermodynamics of basic equations for desalination in RO
processes, giving the volume flux and salt flux through
membranes. We started from the linear phenomenological
equations for the transport established by TIP at not far
from equilibrium conditions, relating generalized fluxes
and driving forces. Afterwards, the equations were
applied to the transport processes through a selective
membrane in contact with two aqueous binary electrolyte
solutions with the same electrolyte at different concen-
trations when differences in both hydrostatic pressure and
electric potential are applied through the membrane. In
this way, the phenomenological Eqs. (38) were obtained
for the volume flux, the diffuse flux of solute respect to the
solvent and electric current. These equations allow us a
new formalization for the phenomenological behaviour of
the membrane system in RO processes, described by
Eqs. (43), giving the volume flux and salt flux as functions
of applied pressure difference and osmotic pressure
difference between the inlet and outlet streams.

Finally, these flux equations were transformed to
present their habitual forms shown in Eqs. (49) and (50),
which are utilized for the analysis and design of the RO
desalination processes. These equations involve the
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transport coefficients (hydraulic permeability, Lp, and
osmotic permeability T) so as the reflection coefficient (F)
characterizing the non-ideal behaviour of the membranes.
All these parameters can be determined experimentally.

4. Symbols

A — Active area of the membrane, m2

ai — Activity of component i
Cs — Salt concentration, mol/m3

Ds — Solute diffusion, m2/s
d — Membrane thickness, m
I — Electric current density, A/m2

Ji — Flux of i-th component, mol/m2 s
J2* — Excess of anionic flux with respect to salt flux,

mol/m2 s
J2** — Anionic flux in correspondence with the salt flux,

mol/m2 s
Js — Salt flux, mol/m2 s
J1 — Cation flux, mol/m2 s
J2 — Anion flux, mol/m2 s
J3 — Water flux, mol/m2 s
Jv — Volume flux, m3/m2 s
JD — Diffusive flux, m/s
Lij — Phenomenological coefficients linking flux Ji and

generalized force Pj, mol2/J m s
Lp — Hydrodynamic permeability, m3/m2 s Pa
ni — Number of moles of component i
P — Hydrostatic pressure, Pa
P* — Standard pressure, Pa
Qc — Concentrate flow rate, m3/m2 s
Qf — Feed water flow, m3/m2 s
Qv — Water flow rate, m3/m2 s
R — Conversion rate
S — Rejection coefficient of the membrane
Sint — Internal entropy, J/K
SP — Salt passage
T — Temperature, K
Vi — Partial molar volume of component i, m3/mol
V — Volume, m3

vs — Solvent speed with respect to membrane, m/s
v3 — Water speed with respect to membrane, m/s
v+ — Stoichiometric numbers of cation in the salt

formula
v! — Stoichiometric numbers of anion in the salt

formula

Xi — Molar fraction of component i
zi — Valence of component I

Greek

)Nm — Membrane potential, V
)N; — Nerstian contribution of the electrode potential, V
)µs — Difference of chemical potential for the solute in

the membrane, V
)µ3 — Difference of chemical potential for the water in

the membrane, V
)P — Applied pressure, Pa
)A — Osmotic pressure difference, Pa
Pi — Conjugate generalized force of the flux Ji,

J/m mol
M — Dissipation function, J/s
N — Electrical potential, V
(i — Activity coefficient of component i
µI — Electrochemical potential of component i, J/mol
)µi

l — Chemical potential of component i in liquid
phase, J/mol

)µi
l,0 — Chemical potential of component i in standard

state, J/mol
F — Reflection coefficient
T — Osmotic permeability, mol/m2 s Pa
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