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A B S T R A C T

The progress of the membrane chlor-alkali technology resulted in a meaningful reduction of
energy consumption in chlor-alkali process. In this research at first step, a zero-gap oxygen-
depolarized chlor-alkali cell with a state-of-the-art silver plated nickel screen electrode (ESNS1)
was employed to consider the effects of various process parameters on caustic current efficiency.
The anode side anolyte pH, temperature, flow rate brine concentration and the cathode side oxy-
gen temperature, flow rate, and the applied current density are taken as the process parameters.
At the second step the pre-scaled experimental data were used to train the artificial neural net-
works (ANNs). The ANNs approach is used to estimate the caustic current efficiency (CCE). In
the training process the back-propagation learning algorithm and several training methods were
used. The minimum error was found to be that of the Levenberg–Marquardt (LM) algorithm.
Excellent prediction with minimum mean square error of 1.1e�4 was made. The results showed
the ANN’s capability and performance for prediction of the caustic current efficiency.

Keywords: Chlor-alkali; Zero-gap advanced cell; Caustic current efficiency; Artificial neural
networks

1. Introduction

Chlor-alkali energy is currently the most efficient
and cleanest technology. It is accepted that the
developed-membrane technology has reached the the-
oretical end-point on energy consumption. Attempts to
reduce manufacturing costs of chlor-alkali technology
have recently led to modifications of the conventional
membrane electrolyzers that allow for operation at
around 50% higher throughput (0.6 A/cm2) than the
standard cells. The state-of-the-art membrane reactors
operate at voltages as low as 3.2 V at a typical current
density of 0.4 A/cm2 [1]. While these modifications
lower the capital and maintenance costs, they result

in higher cell voltages and consequently in higher
energy consumption. As the energy consumption per
unit weight of the products is directly proportional to
the electrochemical reactor cell voltage, lowering of the
cell voltage is the only route to energy savings. Over
the last several years, membrane technology has been
modified to the extent that no viable reduction of the
cell voltage is expected from further cell modifications.
However, by replacing the hydrogen-evolving cath-
odes in the membrane chlor-alkali cells by oxygen-
depolarized cathodes (Fig. 1), the cell voltages and
corresponding power consumption could be reduced
by as much as 30% at 0.4 A/cm2 [2]. In fact the
oxygen-depolarized cathode has to be designed to
facilitate formation of the three-phase boundaries
(gas/liquid/solid) that involve oxygen, water/caustic�Corresponding author
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soda solution, and the catalyst particles. In addition, it
has to effectively manage transport of oxygen to and
caustic soda from the catalyst layer [3].

Due to the strong corrosive properties of the satu-
rated oxygen and concentrated caustic, the chlor-
alkali cells employing oxygen-depolarized cathodes
are more susceptible to loose performance than
the standard hydrogen-evolving cells. Therefore, the
zero-gap cells were employed for this reason. In the
zero-gap cells, the gas diffusion electrode remains in
close contact with the ion exchange membrane. Where
the oxygen and water diffuse from the gas layer side
toward the electrode the cathode remains in intimate
contact with the ion-exchange membrane. While the
oxygen is fed to the common cathode compartment,
the caustic is collected from the common cathode
compartment. The hydrogen-evolving cells and the
oxygen-depolarized cells also differ in the relative sta-
bility of the intermediate products of the hydrogen
evolution and the oxygen reduction reactions [2,3]. The
hydrogen evolution reaction does not produce any
stable intermediates, i.e.

2H2Oþ 2e� ! H2þ 2OH�

While the oxygen reduction reaction may follow the
requested four-electron path as:

O2þ 2H2Oþ 4e� ! 4OH�

or alternatively, according to the two-electron
mechanism to generate peroxide, as:

O2þH2Oþ 2e� ! OH� þHO�2

The peroxide eventually decomposes and produces
an equivalent amount of the hydroxide and thus does
not lower the overall caustic current efficiency. It is a
rather troublesome byproduct, because it produces
gaseous oxygen upon decomposition and may also
precipitate in the highly concentrated NaOH as Na2O2:

2Naþ þOH� þHO�2 ! Na2O2 # þH2O

The sodium peroxide precipitation may cause
liquid and gas flow problems by blocking the active
electrode surface area and also destroying the micro
porous structure of the gas diffusion electrode. The
electrochemical reduction of oxygen in an alkaline
environment has been the topic of many researches
and the successful employment of silver [4–6] and pla-
tinum [5,6] catalysts in oxygen-depolarized chlor-alkali
cathodes has already been reported. All though an
oxygen-depolarized chlor-alkali cell significantly low-
ers energy consumption per unit weight of chlorine
and caustic, simulation of the process parameters to
optimize the process to get the best current efficiency
is almost remained unshackled. The experimental
work is very expensive and by itself cannot be used
to have a clear image and understanding the process
conditions and the possible problems. Therefore, it is
necessary to get a model out of the limited experimen-
tal data to predict the process performance. As the
major processes found in chemical engineering are
nonlinear, the application of the obtained model will
be of great help. The model relates input and output
variables, bypassing the internal complexity of the sys-
tem. Statistical models, based on regression analysis,
are an example of such black box modeling. Most of
these common approaches rely on linear system identi-
fication models. A different favorable alternative mod-
eling techniques, i.e. ANN has recently found
numerous applications in chemical engineering [7,8].
It should also be mentioned that neural networks had
been successfully used in many technology disciplines.
The ability to learn the behavior of the data generated
by a system gives neural networks its versatility [8].
After a brief description of ANN, the implementation
of oxygen-depolarized cathodes in a modified com-
mercial membrane cell using ESNS1 cathode will be
presented. The caustic current efficiency (CCE) of the
cell is studied next. Finally how to create the best ANN

Fig. 1. The chlor-alkali cell replacing the hydrogen-evolving cathode by an oxygen-consuming cathode.
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predictor will be described and the results are com-
pared with the experimental data.

2. Artificial neural network (ANN)

ANN modeling is essentially a black box operation
linking input to output data using a particular set of
nonlinear basis functions. ANNs consist of simple syn-
chronous processing elements, which are inspired by
biological nervous systems and the basic unit in the
ANN is the neuron [9]. ANNs are trained using a large
number of input data with corresponding output data
(input/output pairs) obtained from actual measure-
ment so that a particular set of inputs produce, as
nearly as possible, a specific set of target outputs. Thus,
ANN techniques are especially useful for modeling a
highly nonlinear system very well. Training consists
of adjusting the weight associated with each connec-
tion (synapse) between neurons until the computed
outputs for each set of data inputs are as close as pos-
sible to the experimental data outputs. In a network,
each connecting line has an associated weight. Training
usually begins with random valued for the weight of
ANN. Then, ANNs are supplied with a set of samples
belonging to problem domain to modify the values of
their weights. Two important abilities of neural net-
work are supplying fast answers to a problem and cap-
ability of generalizing the results, to make it acceptable
for unknown samples [10]. There are various learning
algorithms to train neural networks. One of the well-
known topologies of neural networks for learning is
the multi-layer perceptron (MLP), which is used for
classification and estimation problems [7,8]. As shown
in Fig. 2, a MLP is a neural network that has three
layers, an input layer, a hidden layer, and an output
layer [10].

The number of neurons in the input layer and the
output layer is determined by the numbers of input
and output parameters, respectively. In order to find
the best ANN, the optimal number of neurons in the
hidden layer has to be determined (this number will
be determined based on the ANN during the training
process by taking into consideration the convergence
rate, mapping accuracy, etc.). Each layer consists of a
series of nodes, interconnected with weights. During
the learning cycle, the MLP is presented with an input
pattern on the input nodes and a target pattern on the
output layer. The weights are then updated so that
when the network is shown the same input pattern, it
gives the desired output. Each node includes an, which
is a function that decides whether the neuron should
glow depending on its inputs. The activation function
(transfer function) is a nonlinear function. These activa-
tion functions come in many different forms, the clas-
sics being threshold, sigmoid, Gaussian, and linear
function, etc. For more details of various activation
functions see Bulsari [11,12].

In fact, training process requires a proper set of
data, i.e. input (Ai) and target output (Bi) which dur-
ing this the weights and biases of the network are
iteratively adjusted to minimize the network perfor-
mance function [11,12]. The typical performance func-
tion that is used for training feed forward neural
networks is the network mean-squared-errors (MSE)
as follows:

MSE ¼ 1

N

XN

i¼1

ðEiÞ2 ¼
1

N

XN

i¼1

ðBi � AiÞ2 ð1Þ

After training (when the network is put to use),
the values of the weights and the activation fun-
ctions decide which nodes glowing. This type of
network is feed-forward network trained with the
back-propagation learning algorithm [12-14]. The
back-propagation learning algorithm is based on
the selection of a suitable error function, whose values
are determined by the actual and predicted outputs of
the network. The simplest implementation of back pro-
pagation learning is the network weights and biases
updates in the direction of the negative gradient that
the performance function decreases most rapidly. An
iteration of this algorithm can be written as follows
[12,15]:

Pmþ1 ¼ Pm � lmgm ð2Þ

The model with lowest prediction error is being
used as the final and optimal model.

Fig. 2. A typically MLP neural network.
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3. The experimental data set (materials and methods)

3.1. Chemicals used

The brine was prepared from analytical grade NaCl
(Merck Inc.) using deionized water. All other chemicals
used for analysis were also Analar grade.

3.2. Experimental set-up

The electrochemical cell was a divided filter-press
type (Micro-flow cell, Electro cell AB, Sweden) with
10 cm2 (3.3 cm � 3 cm) electrode area (Fig. 3) that was
modified to allocate gas diffusion electrode. The cell
used in this study employed a commercially available,
10 cm2 gas diffusion electrodes (A2STD ESNS1) with a
carbon-supported platinum catalyst (E-TEK Inc.). The
catalyst layer contained 10% of carbon-supported (Vul-
can XC-72) platinum with a total Pt loading of 0.6 mg
cm�2. The nickel screen side of the cathode remained
in intimate contact with the carboxylic side of the ion
exchange membrane (Flemion1 892, Asahi Glass
Co.). The anode was a standard coated titanium plate
(DSA1-Cl2). The cell flow fields were made from
2 mm Teflon. The cell performance evaluation was car-
ried out in an ACA set-up developed in our laboratory.

Fig. 4 shows the process flow diagram of the set-up
used in this study. The anolyte feed tank was heated by
jacketed heater and its temperature was monitored by
digital thermometer. Anolyte pH was measured by an
on-line pH-meter inserted in anolyte feed tank. The
anolyte was recirculated in a separate hydraulic circuit
throughout the experiment by magnetic pump (Fig. 4).
The overflow from the anolyte compartment of the
electrolysis cell was sent to a gas–liquid separator. Dur-
ing electrolysis, Cl2 gas produced was absorbed by 2 M
NaOH solution in the first and the second tank, respec-
tively. The cathode chamber was fed with oxygen at
atmospheric pressure. The oxygen stream was heated
and humidified by a jacketed-bubble column humidi-
fier. The oxygen temperature and the extend of humi-
dification were adjusted before entering into the
cathode compartment. To minimize the corrosion, the

cathode gas feed line was equipped with two valves
that would stop the oxygen flow and replace it with
nitrogen upon a power loss. Constant currents were
applied to the cell and the corresponding cell voltages
were measured by a multimeter. After each test, the
set-up was washed thoroughly with deionized water
drained and then dried. Preliminary tests showed that
to create the determinable chlorine and caustic, the
electrolysis run time should be at least 150 min.

3.3. Analysis

CCE was determined from titration of the sodium
hydroxide samples with standardized 1.0 M HCl solu-
tion (Fisher) against phenolphthalein. The peroxide
content of the NaOH solution was spectrophotometri-
cally determined. Fresh samples of sodium hydroxide
were mixed with a known amount of potassium ferri-
cyanide solution in aqueous NaOH. The peroxide con-
tent was determined from a decrease of ferricyanide
absorption at 418 nm [16]. Due to the very weak acidic
properties of hydrogen peroxide (pH ¼ 11.75 [17]), the
volume of the acid used to neutralize the NaOH sam-
ple corresponding to the sum of the sodium hydroxide
present in the sample and the NaOH produced as a
result of hydro peroxide anion protonation [2]. Since

Fig. 3. Components of the membrane cell used in this study.

Fig. 4. Process flow diagram of the ACA set-up utilized.
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the latter quantity was also equal to the amount of
NaOH that would form because of hydro peroxide
anion decomposition, the CCE quoted in this study are
corrected for peroxide.

4. Simulation of the process by ANN

A great number of experiments were carried out in
this study to examine the effect of each process para-
meter separately. In each series of experiments, only one
process parameter was changed and the others were
fixed. The back-propagation learning algorithm has
been used in feed-forward and in single hidden layer
network. The faster algorithms such as Levenberg–
Marquardt (LM), gradient descent with momentum
(GDM), and scaled conjugate gradient (SCG) which use
standard numerical optimization techniques with
learning rate and momentum constant were employed
in this study. Although LM is the most efficient [11,12]
in many cases, sometimes another methods can be use-
ful or maybe the best. In the training process, anolyte
pH, anolyte temperature, anolyte flow rate, brine con-
centration from the anode side, oxygen temperature,
oxygen flow rate from the cathode side, and the
applied current density process parameters were
selected as the network’s input (seven input nodes).
The CCE (one output node) was selected as the output.
Inputs and outputs are normalized between the ranges
of [0–1]. Also Neurons in input layer have no transfer
function. The neurons in the hidden layer perform two
tasks: summing the weighted inputs connected to them
and passing the result through an activation function to
the output or adjacent neurons of the corresponding
hidden layer (the logistic sigmoid and purelin transfer
functions have been used for hidden and output
layers). Also another transfer functions with various
arrangements have been used but have not better
performance. Each ANN has been trained with 2/3 of
data set and 1/3 of data which have been used for
testing the predictions of ANN. The number of hidden
neurons has been systematically varied to obtain a
good estimate of the trained data [12,18]. The selection
criterion is the net output MSE.

5. Results and discussion

The MSE of various hidden layer neurons are
shown in Fig. 5. As it can be seen in Fig. 6, the optimum
number of hidden layer neurons is determined to be
8 for minimum MSE with 800 iterations (epoch). The
comparison criterion was MSE between network’s out-
put and training data. After training the ANN, the
models become ready for testing and evaluation by

unseen data with network. The various MSE for train-
ing and testing the network is listed in Table 1. Accord-
ing to this table, the most suitable algorithm which
provides the minimum error for the testing is found
to be the LM algorithm. As the LM trained network
gives much better results, it will be used for modeling
the caustic current efficiency. Also as seen in Fig. 7, the
relative error diagram shows the performance of the
optimum ANN.

The relative error for the optimum ANN with eight
neurons hidden layers and 800 epochs was shown in
Fig. 7. In fact, this figure shows the quality of ANN’s
performance by using of relative error function
between the experimental and predicted data. As
shown in this figure and according to restricted error’s
region, the optimum ANN has good performance.

Also, as shown in Fig. 8 the ANN predicted results
are very close to the process measurements (CCE) of
unseen data. Also as shown in this figure, R2 value is
0.998.

As shown in Fig. 9, the results show the good agree-
ment between experimental and predicted data by
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ANN. As shown in this figure, the CCE increases with
brine concentration within the experimental range stu-
died. At low brine concentrations, the low CCE is due
to the membrane swelling and permeability. Conse-
quently, more water is transported through the mem-
brane yielding lower caustic concentration [19]. As
could be expected, the CCE also increases with brine
concentration because of decreased caustic crossover
through the membrane.

As shown in Fig. 10, the results show the good
agreement between experimental data and simulation
by ANN. Also as shown in this figure, the CCE
increases with increasing anolyte pH within the experi-
mental range studied. It is believed that an increase in
brine acidity (decrease in pH) may produce an increase
in H3Oþ flux across the membrane, which may result
in a low membrane resistance, low CCE, and low
NaOH concentration. However, like conventional
membrane cells reported earlier [20] the chlorine cur-
rent efficiency decreases with increasing brine pH due
to production of hypochlorite and chlorate in anolyte at
higher pH’s [21].

As shown in Figs. 11 and 12, the results show the
good agreement between experimental and the pre-
dicted data by ANN. The result in these figures shows

that the CCE increases with anolyte and oxygen tem-
perature. At low temperatures, the rate of oxygen
reduction is low and this lowers the CCE profoundly
[20]. Another point that should mention is that the elec-
trical conductivity of the electrolyte is a function of
concentration and temperature. At high temperatures,
the high conductivity of anolyte solution lowers the cell
voltage and therefore energy consumption of the chlor-
alkali set-up will be low as conventional membrane
cells [20]. Consequently the economic and energy fac-
tors are in favor of the technology that utilizes higher
temperatures.

Fig. 7. A typically relative error between predicted data by
optimum ANN and experimental data.

Table 1
The MSE performance of optimum network with different
algorithms

Algorithm-neurons MSE

Training Test

LM-8 0.000029 0.00011
SCG-8 0.000323 0.001910
GDM-8 0.0026481 0.032014
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Fig. 8. The predicted CCE data by ANN vs. the experimental.
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As shown in Figs. 13 and 14, the results show the
good agreement between experimental and predicted
data by ANN.

As shown in Fig. 13, CCE increases by increasing
the anolyte flow rate. This reason may be the amount
of attached Cl2 bubbles on anodic side of the mem-
brane and reducing those remained within anolyte

84

84.5

85

85.5

86

86.5

87

87.5

0 2 4 6

Anolyte PH

C
C

E
(%

)

Simulation by ANN

EXP data set

Fig. 10. A comparison between experimental data set and the
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[22,23]. In fact, the bubbles decrease the effective area
of the membrane by blinding effects especially at low
anolyte flow rates.

In addition, Fig. 14 shows that CCE increases with
increasing oxygen flow rate. The increase of CCE at
higher rates of oxygen flow rate most likely due to the
effective caustic removal from the electrode by increas-
ing gas flow rate. High gas velocity in the cathode
chamber makes the removal of caustic from the elec-
trode pores easier than low velocities. In very low gas
velocities, we had accumulation of viscous caustic in
the cathode chamber.

Also as shown in Fig. 15, the results show the good
agreement between experimental and predicted data
by ANN. The figure also shows that CCE is decreasing
at high current densities. The effect of current density
on CCE is believed to originate from the different
kinetics of desirable complete 4 electron reduction and
unwanted partial 2 electron reduction of oxygen, i.e.

O2 þ 2H2Oþ 4e� ! 4OH�

O2 þ H2Oþ 2e� ! OOH� þ OH�

In fact, the increase of current density shifts the
cathode potential toward the more negative values and
this phenomenon affects the relative rates of the two
reactions. Higher current densities will likely decrease

CCE by increasing membrane swelling, membrane
permeability [19], and more significant contribution
of the oxygen evolution reaction as well as membrane
blinding by chlorine gas at anode side.

6. Conclusion

A modified commercial electrochemical cell with
the state-of-the-art (ESNS1) cathode has been simu-
lated to predict CCE. The paper deals with the set-up
of a zero-gap advanced chlor-alkali cell and then the
seven process parameters effects were studied. The
experimental results revealed that CCE increases by
increasing the brine concentration, anolyte tempera-
ture, anolyte flow rate, anolyte PH, oxygen tempera-
tures, and flow rate and decreases by increasing the
current density within the experimental range studied.
The results showed that it is not necessary to pressurize
ESNS1 contrary to ELAT1 [2,3] in ACA zero-gap cells.
At the second step, a MLP neural network with the LM
back propagation training algorithm was implemented
to relate experimental data and prediction of CCE in
the process. Results show a good agreement between
experimental data and the predicted ANN ones. If
there were industrial data for longer period of time, the
ability of network could be extended to generate data
in longer periods. The approach invented here needs
minimum experimental data, therefore reduces time
and cost of the test.
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7. Nomenclature

E difference between target data and simulation
g gradient
A input data
l learning rate
N number of data
B target data
P vector of weights
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