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A B S T R A C T

For many decades, the concentration polarization (CP) of uni-univalent salts arising within stag-
nant fluid films adjacent to charged surfaces in the presence of an electric field has been described
by a simplistic model, designated here as classical theory. Barry [1] demonstrated that for a uni-
univalent electrolyte the CP equation obtained by the aforementioned theory could also be
derived from the Nernst–Planck equations. Here, as an extension of Barry’s work, we deduce a
CP equation based on the Nernst–Planck equations applicable to steady transport of valence-
asymmetric salts (salts containing ions of distinct valences, e.g., Na2SO4, CaCl2, FeCl3) within stag-
nant fluid films in the vicinity of charged surfaces and in the presence of an electric field. It is

shown that the expression derived, Cb � Cm ¼ id
FDS

tm
1 � z1D1

z1D1 � z2D2

� �
, matches the classical

CP equation for similar conditions, despite some deceptive hypothesis assumed by the latter.
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1. Introduction

It is very well-known that the passage of an electric
current from a salt solution into a charge-selective sur-
face, such as a metal electrode or an ion exchange mem-
brane, gives rise to a salt concentration distribution
within the stagnant film adjacent to the surface. This
phenomenon is the so-called concentration polariza-
tion (CP), and for many decades, it has been described
based on the diffusion and migration of the charged
species, as presented in Section 2.1.

In the late 90s, the deduction of the classical CP
equation was questioned somehow and Barry proved
that for a uni-univalent electrolyte the aforementioned

equation could also be derived from the Nernst–Planck
equations [1]. It is worth to remark that this equation is
also valid for di-divalent salts (e.g., CaSO4).

Nevertheless, throughout the modelling of multi-
ionic transport in stagnant films adjacent to ion
exchange membranes [2], we questioned the validity
of the classical CP model for valence-asymmetric salts
(salts containing a cation and an anion of distinct
valences, e.g., Na2SO4, CaCl2, FeCl3). Hence, the main
goal of this rapid communication was to derive a CP
expression based on the Nernst–Planck equations
applicable to steady transport of single valence-
asymmetric salts within stagnant fluid films adjacent
to charged surfaces in the presence of an electric field
and compare it with the classical equation derived for
analogous conditions.�Corresponding author
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2. Theory

2.1. Classical theory [3–5]

In the presence of an electric potential gradient,
the total flux of a cation (species 1) through a
cation-exchange membrane, N1

m, inside which the cation
concentration is assumed to be nearly constant (negligi-
ble diffusion), consists solely in the migration flux:

Nm
1 ¼

tm
1 i

z1j jF
ð1Þ

whereas the total flux of the cation within the stagnant
film adjacent to the membrane surface, N1

s, consists in
the sum of the diffusion and migration fluxes, i.e.,

Ns
1 ¼ �DS

dC1

dx
þ ts

1i

z1j jF
ð2Þ

where i is the electric current density, F is the Faraday
constant (9.64867 � 104 C/eq), DS is the salt diffusivity,
C1 and |z1| are the cation concentration (mol/m3) and
valence (eq/mol), respectively, and t1

m and t1
s are the

cation transport numbers in the membrane and solution
(stagnant film), respectively (Fig. 1).

In the steady-state, N1
m and N1

s are equal, hence:

tm
1 i

z1j jF
¼ �DS

dC1

dx
þ ts

1i

z1j jF
ð3Þ

or

tm
1 � ts

1

� �
i

z1j jFDS

¼ � dC1

dx
ð4Þ

Using the following boundary conditions:
x ¼ 0 C ¼ Cm (solution/membrane interface)
x ¼ �d C ¼ Cb (edge of the stagnant film toward

the bulk solution),
the integration of Eq. (4) gives:

tm
1 � ts

1

� �
i

z1j jFDS

¼ �C1b � C1m

�d

¼ C1b � C1m

d

ð5Þ

so that

C1b � C1m ¼
id

z1j jFDS

tm
1 � ts

1

� �
ð6Þ

Since the concentrations of the cation and anion
(species 2) fulfil the electroneutrality requirement:

z1j jC1 ¼ z2j jC2 ¼ C eq=m
3

� �
ð7Þ

Eq. (6) becomes:

Cb � Cm ¼
id

FDS

tm
1 � ts

1

� �
ð8Þ

At this point, it is worth to recall that the cation
transport number in the solution phase, t1

s, is the frac-
tion of the total current density carried by the cation of
ionic charge (or charge number) z1 [6]:

ts
1 ¼

i1

i1 þ i2

¼
z1C1F �z1F D1

RT
dc
dx

� �

z1C1F �z1F D1

RT
dc
dx

� �
þ z2C2F �z2F D2

RT
dc
dx

� �
ð9Þ

where R is the molar gas constant (8.314 J mol-1 K-1),
T is the absolute temperature, and c is the electric
potential difference. Bearing in mind the electroneu-
trality condition once again, t1

s is given by:

ts
1 ¼

z1D1

z1D1 � z2D2

ð10Þ

Substituting t1
s into Eq. (8), we finally obtain the

classical CP equation for valence-asymmetric salts:

Cb � Cm ¼
id

FDS

tm
1 �

z1D1

z1D1 � z2D2

� �
ð11Þ
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Fig. 1. Ionic transport through a stagnant fluid film
adjacent to a negatively charged membrane (cation exchange
membrane).
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2.2. Nernst–Planck approach [7]

Let us derive a CP equation from the first principles
established by the Nernst–Planck equations within a
stagnant fluid film1 in the vicinity of a cation exchange
membrane placed in between an anode and a cathode
and dipped in a dilute single salt solution containing
a cation, and an anion of ionic charges z1, and z2

2, and
diffusivities D1 and D2, respectively (Fig. 1).

In the presence of a moderate electric potential differ-
ence3 and under steady-state conditions, the Nernst–
Planck equations and the electroneutrality requirement
within the stagnant film may be written as follows:

N1 ¼ �D1

dC1

dx
� z1C1D1

F

RT

dc
dx
¼ tm

1 i

z1F
ð12Þ

N2 ¼ �D2

dC2

dx
� z2C2D2

F

RT

dc
dx

¼ tm
2 i

z2F
¼

1 � tm
1

� �
i

z2F

ð13Þ

z1C1 ¼ �z2C2 ¼ C ð14Þ

where C is the salt concentration in eq/m3, which being
substituted into Eqs. (12) and (13) yields:

tm
1 i

z1F
¼ �D1

z1

dC

dx
� CD1

F

RT

dc
dx

ð15Þ

1 � tm
1

� �
i

z2F
¼ D2

z2

dC

dx
þ CD2

F

RT

dc
dx

ð16Þ

Dividing Eqs. (15) and (16), respectively, by D1 and
D2, we obtain:

tm
1 i

z1D1F
¼ � 1

z1

dC

dx
� C

F

RT

dc
dx

ð17Þ

1 � tm
1

� �
i

z2D2F
¼ 1

z2

dC

dx
þ C

F

RT

dc
dx

ð18Þ

Thus, the cation and anion migration terms cancel
out by adding Eqs. (17) and (18) and we have:

i

F

tm
1

z1D1

þ
1 � tm

1

� �
z2D2

� 	
¼ � 1

z1

þ 1

z2

� �
dC

dx
ð19Þ

or

i

F

tm
1 z2D2 þ 1 � tm

1

� �
z1D1

z1z2D1D2

� 	
¼ z1 � z2

z1z2

� �
dC

dx
ð20Þ

so that

i

F

tm
1 z2D2 þ 1 � tm

1

� �
z1D1

z1 � z2ð ÞD1D2

� 	
¼ dC

dx
ð21Þ

Making use of the aforementioned boundary condi-
tions, the integration of Eq. (21) yields:

i

F

tm
1 z2D2 þ 1 � tm

1

� �
z1D1

z1 � z2ð ÞD1D2

� 	
¼ Cb � Cm

�d ð22Þ

or

Cb � Cm ¼ �
id
F

tm
1 z2D2 þ 1 � tm

1

� �
z1D1

z1 � z2ð ÞD1D2

� 	
ð23Þ

For single salt solutions in the absence of electric
current, the cation and anion fluxes are constrained
by the electroneutrality requirement. Due to this con-
straint, the salt diffusivity in water, DS, and the cation
and anion diffusivities, D1 and D2, respectively, are
related by [8]:

DS ¼
ðz1 � z2ÞD1D2

z1D1 � z2D2

ð24Þ

Now multiplying and dividing the right-hand side
of Eq. (23) by the salt diffusivity, DS, and rearranging
it, we finally obtain the CP equation for valence-
asymmetric salts:

Cb � Cm ¼ �
id

FDS

ðz1 � z2ÞD1D2

z1D1 � z2D2

tm
1 z2D2 þ 1 � tm

1

� �
z1D1

z1 � z2ð ÞD1D2

� 	

¼ � id
FDS

tm
1 z2D2 � z1D1ð Þ þ z1D1

z1D1 � z2D2

� 	

¼ id
FDS

tm
1 �

z1D1

z1D1 � z2D2

� �
ð25Þ

Inserting in Eq. (25) the definition of the CP index,
� � ðCb � CmÞ=Cb, and the stagnant film thickness
as assumed by the film theory [10–12], d ¼ DS=kc,
we finally obtain the expression for the CP index:

� ¼ i

FCbkc

tm
1 �

z1D1

z1D1 � z2D2

� �
ð26Þ

where kc is the mass transfer coefficient for the salt dif-
fusion within the stagnant film adjacent to the charged
membrane surface.
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3. Discussion

Comparing Eqs. (11) and (25), it is clear that the
derivations of both the classical theory and the
Nernst–Planck approach led to the same expression for
the CP of single valence-asymmetric salts within
stagnant fluid films adjacent to charged surfaces in the
presence of an electric field. This fact is somehow
astonishing since the diffusive flux in the classical
theory involves the salt diffusivity, DS, instead of the
cation diffusivity, D1. Furthermore, the electric current
across the solution results from the contributions of
both diffusion and migration, thus it appears awkward
to express the migration flux as ts

1i



z1j jF (Eq. (2)).
Therefore, we believe that the Nernst–Planck approach
illustrated in the current work is more reliable.

An equation for the limiting electric current density
in Electrodialysis of single salt solutions of valence-
symmetric and asymmetric salts was also derived from
the Nernst–Planck equations [9]. The match between
the predictions and the experimental data of monova-
lent (Naþ, Kþ, Liþ), divalent (Ca2þ, Mg2þ) and trivalent
(Al3þ) cations was striking, except for Hþ.

4. Conclusions

In this work, we derived an expression based on the
Nernst–Planck equations to describe the CP of single
valence-asymmetric salts within stagnant fluid films
adjacent to charged surfaces in the presence of an elec-
tric field. The equation deduced, Cb � Cm ¼ id

FDS

tm
1 � z1D1

z1D1 � z2D2

� �
, matches the classical CP equation for

identical conditions, despite some misleading assump-
tions of the latter.

Notes

1. There are two distinct layers adjacent to a charged membrane
surface. The electric double layer thickness is just a few nanometres,

whilst the stagnant film thickness is tens of microns. ‘‘Solution/
membrane interface’’ stands for a plane in the vicinity of the mem-
brane surface, that separates the electric diffuse layer from the stag-
nant film, beyond which the electroneutrality requirement is
fulfilled, dispensing with the Poisson equation.
2. zi is the elementary charge on species i (e.g., �1 for the ion Cl�).
3. Whether a moderate electric potential difference is applied across a
freely suspended fluid film, the electroconvection that leads to a spa-
tially periodic flow pattern comprising counter-rotating vortices is
negligible and may be disregarded.
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