
Desalination and Water Treatment
www.deswater.com
1944-3994 / 1944-3986 © 2009 Desalination Publications.  All rights reserved.

10 (2009) 229–237

* Corresponding author.

Presented at EuroMed 2008, Desalination for Clean Water and Energy Cooperation among Mediterranean Countries of Europe and the
MENA Region, 9–13 November 2008, King Hussein Bin Talal Convention Center, Dead Sea, Jordan.

Flexibility study for an MSF desalination plant

Enrique E. Tarifaa*, Samuel Francoa, Demetrio Humanaa, Sergio Mussatib

aUniversidad Nacional de Jujuy — CONICET, Gorriti 237, 4600 San Salvador de Jujuy, Argentina
Tel. +54 (388) 4221587; Fax +54 (388) 4221581; email: eetarifa@arnet.com.ar
bINGAR – CONICET, Avellaneda 3657, 3000 Santa Fe, Argentina
Tel. +54 (342) 4534451; Fax +54 (342) 4553439; email: mussati@ceride.gov.ar

Received 30 September 2008; Accepted in revised form 5 October 2009

abstract
This work addresses a flexibility study on a multi-stage flash (MSF) desalination plant. When any 
plant is designed, the engineers define the design for reaching optimal operation under nominal 
conditions. However, uncertain variables or disturbance cannot be handled to obtain those nominal 
conditions. For this reason, the design contains control elements for compensating the disturbance 
effects. This compensation is only possible into a region defined by the characteristics of the process 
and the control elements. When the actual conditions are out of that region, the compensation is 
not enough, and the plant is not operable. A flexibility study determines the region into which 
the process is operable. This information can be useful for determining design modifications to 
improve the process flexibility. A flexibility study involves a complex mathematical model, which 
is even more complex for a MSF plant. To perform the task, in this work, a stationary simulator 
was developed for a real-world case study, and the region exploration was performed by Monte 
Carlo simulation. Results show, in terms of both robustness and speed of computation, that this 
approach can be a useful tool.
Keywords: Flexibility; Simulation; Monte Carlo; MSF

1. Introduction

Traditionally, processes and controllers are designed 
sequentially. Firstly, the process configurations (struc-
tures) and parameters are designed to satisfy the eco-
nomic objectives, such as maximum profits or minimum 
operational costs. The designs are based on steady state 
models, and subjected to the operational constraints. Af-
terwards, the controllers are designed to reject the likely 
effects of external disturbances and process uncertainties, 
as well to achieve the desired dynamic performance. This 
approach carries a risk in that it may end up choosing 
the cheapest process design that was difficult to control. 

It may also miss out a slightly less economic but easier 
to control designs, the one that might be more profitable 
in a long run [1].

Operability properties of a process determine how 
process dynamics affect the quality of a process control 
design. These include flexibility, controllability, optimal-
ity, stability, selection of measurements and manipulated 
variables. The flexibility is defined as ‘the ability to main-
tain the process variables within feasible operational re-
gion, despite the presence of uncertainties’ [2]. Flexibility 
is often considered simultaneously with the economic 
objectives, hence raises the optimality issue. Therefore, 
flexibility studies are dominated by numerous optimiza-
tion strategies. Those studies aim at the determination of 
flexible operational spaces and flexibility measurements. 
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The analysis generally involves two complementary 
tasks, which are the calculation of flexibility index and 
the flexibility test. 

Operational flexibility is an important consideration 
when designing and operating a chemical plant. Very 
often, flexibility is concerned with the problem of insuring 
feasible steady-state operation over a variety of operat-
ing uncertainties. To quantify how flexible a process is, 
various metrics have been developed. Grossmann et al. 
[2] first introduced the flexibility index FIG which quanti-
fies the smallest percentage of the uncertain parameters’ 
expected deviation that the process can handle. Another 
metric named resilience index RI was adopted by Saboo 
et al. [3]. These two measurements require identification 
of the nominal point, which must be located within the 
feasible region. In addition, these measurements just 
consider the critical uncertainty. This may cause serious 
flexibility under-estimation or neglect the ability of the 
process to handle other process uncertainties. To solve 
this problem, Pistikopoulos and Mazzuchi [4] proposed 
the stochastic flexibility SF. Although SF accounts for the 
chance that the process can operate feasibly, the prob-
ability distribution of all the uncertain parameters may 
not be available at the design stage. Even though the 
probability distributions are obtainable, the calculation 
of SF is usually tedious. To avoid this difficulty, another 
index considers the size of the feasible space in which the 
uncertain parameters can be feasibly handled; this index 
FIV is defined as the size ratio of the feasible space to 
the overall space bounded by the uncertain parameters’ 
expected limits [5]. The cited indexes, except FIG and RI, 
belong to the interval [0, 1], and a higher value means a 
higher flexibility.

This paper estimates several flexibility indexes for a 
multi-stage flash (MSF) desalination plant. This study 
involves a complex mathematical model. To perform the 
task, in this work, a stationary simulator was developed, 
and the region exploration was performed by Monte 
Carlo simulation [6, 7]. Results show, in terms of both 
robustness and speed of computation, that this approach 
can be a useful tool.

2. Flexibility study strategy

The flexibility study strategy proposed in this work 
will be presented by using the system shown in Fig. 1. In 
that system, stream F1, water at 25°C, and stream F2, water 
at 80°C, are mixed to yield a new stream at 52°C. The 
pressure at the V1 input is 1.115×105 Pa. The volumetric 
flow of F2 is 0.02 m3/s. The tank is open and discharges 
into the atmosphere; its diameter is 1.5 m and the maxi-
mum allowed liquid level is 2 m. The controller CT (a 
P+I controller) is for controlling the tank temperature, 
and the controller CL (a P controller) is for controlling 
the tank level; the respective set points are 52°C and 1 m.
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The dynamic model for the mixing tank is conformed 
by the following equations:
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3 v3 3F C x g L= ρ  (9)

where the parameters of controller CT are Tsp = 52°C, 
AbT = 0.5, KT = 0.05°C–1 and tiT = 30 s; the parameters of 
controller CL are Lsp = 1 m, AbL = 0.5 and KL = 20 m–1. 
The valves parameters are Cv1 = 4.039×10–4 m3.5/kg0.5 and 
Cv3 = 8.078×10-4 m3.5/kg0.5.

The steady model is obtained from the dynamic one 
by setting to zero all the derivative terms. The resulting 
model contains 9 equations and 9 unknowns (F1, F3, T, 
L, eT, x1, eL, x3 and AiT). By removing T, eT, eL and AiT, the 

Fig. 1. Mixing tank.
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model can be solved by evaluating the following equa-
tions:

( )
( )

2
1 2
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 (10)
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and by solving the following equation system:

3 1 2F F F= +  (12)
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 (13)

( )3 L Lx Ab K L Lsp= + −  (14)

3. Standardization of variables

Every variable has to be standardized as follows:

X XnX
Xn
−

d =
D

 (15)

where X is the variable’s value, Xn is the nominal value 
that was considered for the variable during the system 
design, DXn is the half-band of acceptable variability for 
the variable. Therefore, dX is a dimensionless value that 
belongs to the open interval (–1, 1) under normal condi-
tions, taking the null value at the nominal condition.

The study considers two set of variables. The first set, 
called D, is formed by the disturbances; the second one, 
called Y, is formed by the other process variables (i.e., 
all the variables of the process, except disturbances). For 
the mixing tank, the selected disturbances are F2 and T2; 
whereas the selected process variables are x1 and x3.

4. Overall and feasible spaces

According to the above definitions, the overall space 
bounded by the uncertain parameters’ expected limits 
[5] can be defined as:

1 DjX jd ≤ ∀ ∈  (16)

On the other hand, the feasible space in which the 
uncertain parameters can be feasibly handled, and so the 
process is operable, can be defined as:

1 YjX jd < ∀ ∈  (17)

In order to determine whether the process is operable 
or not for a given point of the overall space, it is conve-
nient define the operability index in the following way:

( )
Y

max jj
Io X

∈
= d  (18)

While Io — the maximum observed deviation for the 
process variables — belongs to the interval [0, 1), the 
process is operable for the present conditions because 
the deviations of all process variables are less than the 
respective acceptable variabilities. This index is used 
to determine the feasible space, in which the uncertain 
parameters can be feasibly handled: the feasible space is 
conformed by all the process states with Io belonging to 
the interval [0, 1). 

Fig. 2 presents the overall space for two disturbances. 
A square defined by the inscribing circle with radius r 
and center (0, 0) is also shown in that figure; that square 
is called the maximum square if it is the largest square 
that can be defining into the feasible space.

The probability of the disturbances yield a point 
into the maximum square depends on the probability 
distributions associated with the disturbances. If every 
disturbance follows the uniform distribution (Fig. 3), 
that probability has the distribution presented in Fig. 4. 
Conversely, if every disturbance follows the triangular 
distribution (Fig. 5), that probability has the distribution 
presented in Fig. 6. Both distribution (Fig. 4 and Fig. 6) 
were obtained by Monte Carlo simulation with a sample 
of 1000 points [6,7].
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Fig. 2. Overall space for two disturbances.

Fig. 3. Uniform distribution for dD.
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For those particular distributions, it is possible deter-
mine analytically the respective probability density func-
tion -pdf- f(r) and the cumulative distribution function 
-cdf- F(r) [8] associated to the maximum hypercube of di-
mension n (maximum square if n = 2). If every disturbance 
follows the uniform distribution, the corresponding pdf 
and cdf for the maximum hypercube of dimension n are:

1( ) nf r nr −=  (19)

( ) nF r r=  (20)
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Fig. 4. Probability distribution of r for uniform distribution of 
dD. The mean is 0.66.
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Fig. 5. Triangular distribution for dD.
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Fig. 6. Probability distribution of r for triangular distribution 
of dD. The mean is 0.47.

If every disturbance follows the triangular distribu-
tion, the corresponding pdf and cdf for the maximum 
hypercube of dimension n are:

( ) ( )( ) ( )
122 2 1 1

n
f r n r r r r

−
= + − −  (21)

( )( )2( ) 2 1
n

F r r r r= + −  (22)

Then, the probability of the combination of distur-
bances be constrained to the maximum square defined 
by r is equal to ( )

0

r
F t dt∫ .

The maximum hypercube is useful because it is easy to 
verify whether a given operating point is into it, which is 
a sufficient condition to guarantee the process operability. 
If the point is outside the maximum square, a deeper 
analysis is needed such as the outlined below. 

5. Flexibility study for the mixing tank

Table 1 presents the nominal values and half-bands of 
variability adopted for the mixing tank. Fig. 7 shows the 
corresponding feasible space (without shadow). Accord-
ing to that figure, the process is not operable for T2 below 
52°C (the set point value for the controller CT), a constant 
limit; however, the upper limit for T2 is a function of F2. 
The radius r of the inscribing circle into the maximum 
square is equal to 0.42. By using the corresponding cfd, 
it can be estimated the maximum square covers 18% of 
the possible cases if every disturbance has uniform dis-

Table 1
Nominal values and half-bands of acceptable variability for 
the mixing tank

F2 (m3/s) T2 (°C) x1 x3

Xn 0.02 80 0.5 0.5
DXn 0.01 40 0.5 0.5

Fig. 7. Feasible space (without shadow) for the mixing tank, 
r = 0.42.
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tribution; whereas the covered cases are 44% when every 
disturbance follows the triangular distribution.

Fig. 8 presents the values adopted by the process 
variables into the feasible space. Several simulations were 
run to obtain that figure. In each simulation, a particular 
combination of disturbances was generated, and the 
corresponding values for the process variables were also 
calculated. If the process state thus obtained belonged to 
the feasible space — i.e., with Io belonging to the interval 
[0, 1) —, the pair dx1 and dx3 was added to the plot as the 
pair n. The most critical variable is x1 because it reaches 
the limits of acceptable variability; therefore, the feasible 
space can be expanded by acting on the sector supervised 
by the controller CT (e.g., increasing the size of valve V1 
or decreasing temperature T1). In fact, from Eq. (11) it is 
evident that it is possible to reduce x1 (the critical variable) 
by just increasing Cv1 (i.e., the size of valve V1) without 
change the other variables. From Fig. 8, it can be deduced 
that the reduction of x1 will cause that some process 
states become now feasible states, increasing in this way 
the feasible space. That is one of the several conclusions 
that can be obtained from that figure, and that it is just 
one advantage of the proposed method. To prove that 
the previous conclusion is correct, that was tested out 
by determining the new feasible space when Cv1 is mul-
tiplied by two. The new feasible space thus obtained is 
bigger than the original one. Again, the same conclusion 
was obtained, but it required many simulations. That 
fact remarks the utility of the information presented by 
Fig. 8, which is a contribution of the proposed method.

Fig. 9 shows process states corresponding to rep-
resentative points of the overall space. That figure is a 
representation of parallel coordinates; which is a com-
mon way of visualizing high-dimensional geometry and 
analyzing multivariate data. To show a set of points in 
an n-dimensional space, a backdrop is drawn consisting 
of n parallel lines, typically vertical and equally spaced. 
A point in n-dimensional space is represented as a poly-
line with vertices on the parallel axes; the position of the 
vertex on the i-th axis corresponds to the i-th coordinate 
of the point. In this work, the set of represented points 
correspond to the studied process states — i.e., every 
plotted polyline represents a particular steady state— 
while the axis represent to the studied variable — e.g., 
Fig. 9 has axis for F2, T2, x1 and x3. In Fig. 9, every point of 
the overall space is depicted by a line linking the values 
corresponding to all the considered dX. Of those points, 
only those with absolute values of dx1 and dx3 lesser than 
1 are operable —i.e., those process states belong to the 
feasible space. That figure also shows that x1 is the most 
critical variable; moreover, the strong effect of T2 over x1 
is evident, being a decreasing of T2 more risky than an 
increasing. Indeed, x1 is the most critical variable because 
it is the variable with most values out of interval (–1, 1). 
The effect of T2 on x1 provokes that the polylines associ-
ated to an increase of T2 are also associated to an increase 

of x1; the equivalent relation exist between the decrease 
of T2 and the decrease of x2, but it is weaker. This result 
is just one of all that can be obtained from those figures, 
and it is another contribution of the proposed method.

6. Flexibility indexes

Different kinds of indexes were defined trying to rep-
resent the process flexibility. In general, the better is the 
index; the more complex is its calculation. That is why, at 
the first design stages, the simpler indexes can be used; 
but for the last design stages or for processes already 
in operation, it is convenient to employ the most exact 
indexes. For this reason, several indexes were evaluated 
for the mixing tank. Those indexes are presented below 
ordered by increasing quality and complexity. 

The first index is Iv (it is equivalent to FIG [2] while 
FIG ≤ 1) that is defined as:

Iv r=  (23)

where r is the radius of the inscribing circle into the 
maximum square.

The second index is Ic, which is defined as the size 
ratio of the maximum hypercube of dimension n (maxi-
mum square if n = 2) to the overall space:
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Fig. 8. Process variables in the feasible space for the mixing 
tank.
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nIc r=  (24)

The third index is Ir, which is defined as the size ratio 
of the feasible space to the overall space (it is equivalent 
to FIV [5]). All the above indexes belong to the interval 
[0, 1], and the value 1 represents the maximum flexibility.

The three introduced indexes are conservative because 
they take into account a subspace (i.e., the maximum 
square or hypercube) of the whole feasible space. Be-
sides, those indexes rely on geometric ratios between the 
feasible space and the overall space, which is adequate 
when every disturbance follows the uniform distribu-
tion. However, for other distributions, it is necessary 
to define additional indexes; thus, the fourth defined 
index is Pc, the probability of the disturbances yield a 
point into the maximum square (or hypercube), which 
depends on the probability distributions associated with 
the disturbances. Eqs. (20) and (22) are used to calculate 
Pc for uniform and triangular distributions respectively; 
for other distributions, Monte Carlo simulation can be 
utilized for that proposal [6,7]. The fifth and last index 
is Pr, the probability of the disturbances yield a point 
into the feasible space (it is equivalent to SF [4]), which 
also depends on the probability distributions associated 
with the disturbances and it is the index most difficult 
to calculate. In this work, that index was calculated by 
Monte Carlo simulation with 10000 samples. Table 2 
shows all the defined indexes calculated for the mixing 
tank. In the calculation, it was assumed triangular dis-
tribution for the disturbances. If the disturbances yield 
a point into the feasible space, the process is operable 
in those conditions by definition. Therefore, the more 
the probability of the disturbances yield a point into the 
feasible space, the more the probability of the process is 
operable — i.e., the process is more flexible. From all the 
indexes presented in Table 2, the more realistic and useful 
is Pr, which represents the probability that the process be 

Table 2
Flexibility indexes for the mixing tank

Iv Ic Ir Pc Pr

0.42 0.18 0.68 0.44 0.88

operable. The value 0.88 may be enough for somebody; if 
not, the modifications suggested by studying Fig. 8 and 
Fig. 9 can be implemented to expand the feasible space, 
and thus increases Pr. That analysis is an important part 
of the proposed strategy.

7. MSF modeling

The strategy proposed to perform a flexibility study 
was applied to analyze a MSF desalination plant (Fig. 10), 
which has a series of flash units (stages) where sea water 
is evaporated to obtain distilled water [9]. The plant has 
N stages; the first M ones belong to the recovery section, 
whereas the remaining ones belong to the rejection sec-
tion. There are also six P+I controllers, which enable to 
set the operating conditions for the heater, the feed, the 
recycle and the last stage level.

In this work, the process dynamic model consists of a 
set of ordinary differential equations and a set of algebraic 
equations developed by Tarifa and Scenna [9]. The steady 
model was obtained by setting to 0 every derivative term. 
The model parameters were set to represent the system 
studied by Thomas et al. [10]. This system has 15 stages in 
the recovery section and 3 stages in the rejection section. 
Table 3 shows the adopted operating condition.

8. Flexibility study for the MSF plant

On one hand, the disturbances to consider in this work 
are the seawater temperature Tsw and the seawater salin-

Fig. 10. The MSF system.
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Table 3
Operating conditions

Seawater:
Tsw = 28°C
Xsw = 51500 ppm

Vapour:
Pvh = 0.937 atm

Controller set points:
T0s = 90 °C
Ls = 0.6 m
Wcws = 14800 tn/h
Tcws = 33°C
Rmus = 4.6
Wbs = 14380 tn/h

ity Xsw. Those variables show a wide range of variability, 
and they have large effects on MSF plants operation [11]. 
On the other hand, the process variables to consider in 
the study are presented in Table 4.

Table 5 presents the nominal values and half-bands of 
variability adopted for the MSF plant. For each process 
variable, its half-band of variability DXn was set equal to 
80% of the corresponding nominal value Xn.

Fig. 11 shows the feasible space (without shadow) 
for the MSF plant. That feasible space was obtained by 
simulation, which is quite time consuming due to the 
model complexity. The simulations were performed 
taking sample with steps equal to 0.20 for dXsw and dTsw. 
The radius r of the inscribing circle into the maximum 
square is equal to 0.40. According to the simulations, the 
process is not operable for Tsw above 33°C (the set point 
Tcws value for the controller CT), a constant limit; how-
ever, the lower limit for Tsw is a function of Xsw. That 
upper limit of Tsw corresponds to a value of r equal to 
0.60; therefore, the actual radius belongs to the interval 

Table 4
Process variables to consider

AL: output of CL.
AWmu: output of CM.
AT0: output of CH.
ATcw: output of CT.
AWb: output of CR.
AWcw: output of CW.

Table 5
Nominal values and half-bands of acceptable variability for the MSF plant

Tsw (°C) Xsw AL AWmu AT0 ATcw AWb AWcw

Xn 30 0.0515 0.35 0.42 0.54 0.32 0.53 0.22
DXn 5 0.0165 0.28 0.34 0.43 0.26 0.42 0.18

[0.40, 0.6). Taking the worst case, r results equal to 0.40. 
By using the corresponding cfd, it can be estimated the 
maximum square covers 16% of the possible cases if 
every disturbance has uniform distribution; whereas the 
covered cases are 41% when every disturbance follows 
the triangular distribution.

Fig. 12 presents the values adopted by some of the 
analyzed process variables into the feasible space; the 
remaining ones were not plotted because their changes 
were not so important. The most critical variable are ATcw 
and AWcw because they reach the limits of acceptable 
variability; therefore, the feasible space can be expanded 
by acting on the sectors supervised by the controllers CT 
and CW (e.g., increasing the size of corresponding valves).

Fig. 13 shows representative points of the overall 
space for the MSF plant. Every point is depicted by a line 

Fig. 11. Feasible space (without shadow) for the MSF plant, 
r = 0.40.
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Fig. 12. Process variables in the feasible space for the MSF plant.
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linking the values corresponding to all the considered 
dX. Of those points, only those with absolute values of 
dATcw and dAWcw lesser than 1 are operable. That figure 
also shows that both process variables, ATcw and AWcw, 
are critical; moreover, the strong effect of Tsw on them 
is evident, being an increasing of Tsw more risky than a 
decreasing.

Finally, Table 6 shows the previously defined indexes 
calculated for the MSF plant. In the calculation, it was 
again assumed triangular distribution for the distur-
bances.

Fig. 13. Representative points of the overall space.
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Table 6
Flexibility indexes for the MSF plant

Iv Ic Ir Pc Pr

0.40 0.16 0.68 0.41 0.82

9. Conclusion

A strategy to perform a flexibility study was presented 
and it was applied to a MSF plant. The strategy begins 
with a steady model of the analyzed process. Next, the 
main disturbances and process variables are identified. 
Those variables are then properly standardized. The fea-
sible space is determined by simulation. At this point, a 
set of indexes can be evaluated and, in this manner, the 
process flexibility is estimated.

The proposed study enables to determine the prob-
ability associated to the feasible space. Besides, the study 
enables to identify the critical variables of the process; 
thus, the flexibility can be increased by acting on them. 
The inverse problem can also be considered, i.e., deter-
mining the effects on the process flexibility produced by a 
modification into the plant. Then, the new feasible space, 
its new associated probability and the involved costs will 
establish together the convenience of that modification.

Symbols

tI — Integral time constant, s
dX — Standardized variables
DXn — Half-bands of acceptable variability
A — Cross sectional area, m2

Ab — Controller bias
Ai — Integral effect of CT, s×°C
AL — Output of CL
AT0 — Output of CH
ATcw — Output of CT
AWb — Output of CR
AWcw — Output of CW
AWmu — Output of CM
Cv — Valve flow coefficient, m3.5/kg0.5

D — Disturbances
D — Set of disturbances
eL — Controller error of CL, m
eT — Controller error of CT, °C
F — Volumetric flow, m3/s
Io — Operability index
Iv, Ic, Ir— Flexibility indexes
j — Variables (subscript)
KL — Gain of CT, °C–1

KT — Gain of CT, m–1

L — Level, m
Ls — Set point of CL for the MSF system, m
Lsp — Set point of CL for the mixing tank, m
M — Number of stages in the recovery section of the 

MSF plant
N — Total stages of the MSF plant
P — Pressure, atm
Pc, Pr — Probabilities
Pvh — Heater vapour pressure, atm
r — Radius of the inscribing circle into the 

maximum square
Rmu — Set point of CM
T — Temperature, °C
t — Time, s
T0s — Set point of the CH, °C
Tcws — Set point of CT for the MSF system, °C
Tsp — Set point of the CT for the mixing tank, °C
Tsw — Seawater temperature, °C
x — Valve opening
X — Variables
Xn — Nominal values
Xsw — Seawater salt mass fraction
Y — Set of process variables
Wbs — Set point of CR, tn/h
Wcws — Set point of CW, tn/h

Acknowledgement

The authors wish to acknowledge the financial sup-
port of the Consejo Nacional de Investigaciones Cientí-



 E.E. Tarifa et al. / Desalination and Water Treatment 10 (2009) 229–237 237

ficas y Técnicas CONICET (Argentina) and Universidad 
Nacional de Jujuy UNJu (Argentina).

References
[1]  O. Weitz and D.R. Lewin, Dynamic controllability and resiliency 

diagnosis using steady state process flowsheet data, Comp. 
Chem. Eng., 20(4) (1996) 325–335.

[2]  I.E. Grossmann, K.P. Halemane and R.E. Swaney, Optimization 
strategies for flexible chemical processes, Comp. Chem. Eng., 
7(4) (1983) 439–462.

[3]  A.K. Saboo, M. Morari and D.C. Woodcock, Design of resilient 
processing plants.VIII: A resilience index for heat exchanger 
networks, Chem. Eng. Sci., 40(8) (1985) 1553–1565.

[4]  E.N. Pistikopoulos and T.A. Mazzucchi, A novel flexibility analy-
sis approach for processes with stochastic parameters, Comp. 

Chem. Eng., 14(9) (1990) 991–1000.
[5]  S.-M. Lai and C.-W. Hui, Measurement of plant flexibility, Comp. 

Aided Chem. Eng., 24 (2007) 189–194.
[6]  N. Metropolis and S. Ulam, The Monte Carlo method, J. Amer. 

Stat. Assoc., 44 (1949) 335–341.
[7]  R.Y. Rubinstein and D.P. Kroese, Simulation and the Monte Carlo 

Method, 2nd ed., John Wiley & Sons, New York, 2007.
[8]  C. Rose and M.D. Smith, Mathematical Statistics with Mathemat-

ics, Springer-Verlag, New York, 2002.
[9]  E.E. Tarifa and N.J. Scenna, A dynamic simulator for MSF plants, 

Desalination, 138 (2001) 349–364.
[10]  P.J. Thomas, S. Bhattacharyya, A. Patra and G.P. Rao, Steady 

state and dynamic simulation of multi-stage flash desalination 
plants: A case study, Comp. Chem. Eng., 22 (10) (1998) 1515–1529.

[11]  M.S. Tanvira and I.M. Mujtaba, Neural network based correla-
tions for estimating temperature elevation for seawater in MSF 
desalination process, Desalination, 195 (2006) 251–272.


