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abstract
Scale formation of soluble salts is one of the major factors limiting the performance of reverse 
osmosis (RO) membranes for desalination. However, it is difficult to predict membrane fouling 
due to scale formation in a complicated feed water containing dissolved organics such as humic 
substances. This study aims at prediction of the complicated fouling phenomenon by scale forma-
tion in the presence of dissolved organic matters. Experimental studies with model solutions were 
conducted in a small batch filtration device. Humic acid and calcium sulfate were used as model 
dissolved organic matters and scale-forming salts. A genetic programming technique was applied 
to predict the effect of dissolved organic matters on scale formation. 
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1. Introduction

Reverse osmosis (RO) membrane process has been 
considered a promising technology for water treatment 
and desalination. RO membrane removes ions and or-
ganic chemicals with lower energy consumption than 
other competing technologies such as evaporation and 
electrodialysis. In addition, its treatment efficiency and 
performance are stable as well as predictable. RO has 
been proven to be adequate for producing pure water in 
various applications [1,2]. 

Nevertheless, seawater and brackish water always 
have the tendency for scale formation and fouling prob-
lems due to dissolved salts and finely suspended solids. 
Scales are hard mineral deposits that precipitate from 
the feed stream onto the membrane surface. The scale-
forming salts are ubiquitous in most water environments, 
including calcium sulfate (CaSO4), calcium carbonate 
(CaCO3), and silica (SiO2) [3]. 

Since scale formation is a serious constraint in de-
signing and operating RO systems, elaborate models to 
simulate these scale and fouling problems are required 
to help the design engineer to predict the effects of such 
problems on the performance of the RO plants. Unfortu-* Corresponding author.
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nately, scale formation is complex and hard to predict in 
RO systems. Two different mechanisms of scale formation 
are involved, including such as surface (heterogeneous) 
crystallization and bulk (homogeneous) crystallization. 
Concentration polarization plays an important role in 
scale formation in membrane systems [4,5]. Other factors 
affect the crystallization process such as pH [6], tem-
perature [7], and the presence of dissolved organics [8]. 
Although mechanistic models are useful to understand 
scale formation mechanisms, they have limited ability 
to predict fouling due to scale formation in practical 
applications.  

In this study, we developed a data-driven model to 
explore the effect of CaSO4 scale formation on RO mem-
brane process. The genetic programming (GP) technique 
was applied to overcome the limitation of mechanistic 
models. Using the model, we investigated the effect of 
background organic matters on RO membrane fouling 
due to scale formation. The relative importance of each 
operating parameter was also analyzed using this model-
ing approach. 

2. Theory 

2.1. Mechanistic model for RO fouling due to scale formation

Scale formation is a complex process in which two 
pathways for crystallization are involved. This can be 
expressed using the resistance-in-series model and crys-
tallization kinetic theory. Based on this approach, the 
permeate flux is given by combining the surface blockage 
and cake filtration models [9]: 
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where Lv is the solvent transport parameter; DP is the 
transmembrane pressure; p is the osmotic pressure; h is 
the permeate viscosity; Rm is the membrane resistance; Rc 
is the resistance due to cake formation; A is the membrane 
area; and Ab is the membrane area occupied by surface 
crystals. Here, Ab and Rc are given by [4,9]:
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where b is the area occupied per unit mass; ms is the 
weight of scale formed directly on membrane surface; a 
is the specific cake resistance; and mc is the accumulated 
weight of precipitated scale. 

The rate of scale formation depends on both nucle-
ation and crystal growth kinetics. The rate of nucleation 
is related to the induction time (t), which is defined as 
time to induce formation of detectable crystals. This 
can be calculated using the kinetic information on the 

crystal [9]. Once the nucleation occurs, crystals grow on 
the surface of membrane through surface crystallization 
and/or bulk crystallization. The surface and bulk crystal 
growth rate of scale-forming salt can be written as [5,9]:

	 (4)

	 (5)

where ks is the rate constant of surface crystallization; cs 
is the saturation concentration; n is the order of reaction 
rate; kc is the rate constant of bulk crystallization; sp is 
surface area of active sites on bulk crystals; cb is the bulk 
phase concentration; y is the deposition probability of 
crystal particles; m is the order of reaction rate; and kc is 
the apparent rate constant of bulk crystallization (= kcspy).

The mechanistic model allows better understanding 
of crystallization mechanisms in RO systems. However, 
it is difficult to obtain all kinetic and filtration parameters 
under various conditions, leading to poor prediction of 
experimental data using the model. Moreover, the kinetic 
parameters may be changed if the feed solution contains 
dissolved organics. This is why data-driven models are 
required to predict and control scale formation and foul-
ing in RO systems. 

2.2. Application of genetic programming

Genetic programming (GP) is an evolutionary 
algorithm-based methodology inspired by biological 
evolution to find computer programs that perform a 
user-defined task [10]. GP evolves computer programs 
represented in memory as tree structures, which can be 
easily evaluated in a recursive manner. Every tree node 
has an operator function and every terminal node has 
an operand, making mathematical expressions easy to 
evolve and evaluate. 

Using GP, a model to predict the complicated phe-
nomena can be developed if experimental data is enough 
to evolve (or train) it. On the other hand, it is difficult 
to find physical meaning of model structures. Thus, GP 
models may not be used for fundamental studies but 
process control and simulation. The following steps are 
involved for developing the optimum model based on 
GP algorithm [11]: 
1.	 Initialize the population: A GP system (a software tool 

to make GP models) creates a population of programs 
randomly. 

2.	 Run a tournament: The GP system picks four pro-
grams randomly out of the population of programs. It 
compares them and picks two winners and two losers 
based on fitness.

3.	 Apply the search operators: The GP system then 
applies search operators like crossover and muta-
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tion to the winners and produces two “Children” or 
“Offspring.” 

4.	 Replace the losers. After the search operators have 
been applied to the copies of the winners (the off-
spring), these offspring replace the two losers in 
the tournament. The winners of the tournament are 
unchanged.

5.	 Repeat until Termination. The GP system then repeats 
steps 2 through 4 until the run is terminated.

In this study, a commercial GP system, Discipulus 
(RML Technologies, USA), was used to make models for 
simulating scale formation in RO systems. 

3. Experimental 

The test system shown in Fig. 1 was used to measure 
filtration characteristics for RO membrane. The stirred cell 
was made of stainless steel to improve chemical stabil-
ity. The diameter of the stirred cell was 54 mm and the 
working volume was 100 ml. A magnetic stirrer (Stirrer 
assembly 8200, Millipore, USA) was positioned just above 
the membrane. The length of the stirring bar was 52 mm. 
The working pressure was controlled by a high pres-
sure nitrogen cylinder and by a gas pressure regulator. 
The stirring speed was controlled by a magnetic stirrer 
plate. The temperature of the feed solution was adjusted 
to 20–25°C and the effect of temperature on viscosity as 
well as density was corrected. Since the experiment was 
performed in a short time (normally less than 30 min), 
the variations of the temperature during an experiment 
were smaller than ±1°C. 

A commercially available RO membrane (Filmtec, 
USA) of the thin film composite (TFC) type was used for 
the filtration tests. The pure water flux was measured to 
be 60–70 L/m2-h at 1000 kPa and the ion rejection was 
over 98%. All experiments were performed using new 
membranes. Prior to the filtration all membranes were 
thoroughly cleaned to remove remaining organic and 

Fig. 1. Schematic diagram of a batch filtration system.
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inorganic materials by successively filtering 0.1 M sodium 
hydroxide and 0.1 M hydrochloric acid solution at 10 bar. 
Finally the membrane was cleaned with ultrapure water.

The permeate flux was expressed in terms of concen-
tration factor (VCF). The concentration factor, defined as a 
ratio of the feed volume to concentrate volume, indicates 
the extent of concentration: 
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where Vf, Vc, and Vp are defined as the volume of feed, 
concentrate, and permeate, respectively. VCF is propor-
tional to permeate recovery. 

Humic acid (Aldrich, USA) was obtained from Aldrich 
Chemical and used as a model dissolved organic matters 
(DOM). To prepare the stock solution, the powdered form 
of humic acid were dissolved in deionized water and fil-
tered by a 0.45 mm filter. The final concentration of humic 
acid stock solution was set to be 35 mg/L as TOC. The 
stock solution was kept in a refrigerator at 4°C before use. 
Hydrochloric acid and sodium hydroxide (Ajax Chemical, 
Australia) were used to adjust pH of the solution. The 
concentration of DOM was measured using a total organic 
carbon analyzer (DC-180, Rosemount, USA), which is 
based on a persulfate-ultraviolet light oxidation method 
[12]. To determine the molecular weight of DOM, the feed 
solution was divided into the four fractions using three 
cellulose acetate hydrophilic ultrafiltration membranes 
(Amicon, USA) with different molecular weight cut-off; 
30,000, 10,000 and 5,000 Dalton.

A saturated solution of CaSO4 (2000 mg/L) was used 
as a model scale-forming salt. Prior to filtration test, the 
solution was prefiltered using a 0.45 mm filter. The concen-
trations of CaSO4 were determined by an ion chromatog-
raphy (DIONEX 4000I, USA) and by a conductivity meter 
(Model 170, Orion, USA). The turbidity measurement for 
the feed and retentate was made on a turbidimeter (HF, 
DRT-100B, USA). 

4. Results and dscussion

4.1. RO flux decline due to scale formation 

A series of experiments were performed to investigate 
the effect of scale formation on RO flux under various 
conditions. The details on the experimental matrix are 
summarized in Table 1. The applied pressure ranged 
from 6 bar to 15 bar and the stirring speed ranged from 
170 rpm to 600 rpm. The range of humic acid concentra-
tion was between 0 mg/L and 10 mg/L. 

Fig. 2 shows the flux in batch cell filtration of saturated 
CaSO4 solutions with various humic acid concentrations 
as a function of time. The operating conditions for each 
run are given by Table 1. In all cases, the flux decreased 
with time because CaSO4 in solution crystallized and 
the crystals fouled the membrane. Nevertheless, the 
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Table 1
Experimental matrix

Run Applied pressure 
(bar)

Stirring speed 
(rpm)

Time 
(min)

VCF Humic acid concentration 
(mg/L)

1 12 600 0–57 1–6.2 0
2 12 600 0–57 1–6.4 0.2
3 12 600 0–53 1–7.1 0.4
4 12 600 0–58 1–6.7 0.6
5 12 600 0–61 1–5.9 0.8
6 12 600 0–52 1–8.4 1
7 12 600 0–52 1–7.9 2
8 12 600 0–58 1–12.3 4
9 6 170 0–116 1–5.7 0

10 6 600 0–97 1–5.1 0
11 6 1000 0–142 1–7 0
12 6 170 0–95 1–7.7 0.5
13 6 170 0–98 1–9.8 1
14 6 170 0–128 1–32.5 2
15 6 170 0–97 1–28 10
16 15 300 0–49 1–6 0
17 15 400 0–45 1–5.2 0
18 15 500 0–45 1–5.6 0

patterns for flux decline are quite different depending 
on the operating conditions. For instance, the initial flux 
is high for high applied pressure (12 bar and 15 bar) but 
the rate of flux decline also is high. The stirring speed 
and humic acid concentration also affect the rate of flux 
change with time. 

Theoretical models based on the solution-diffusion 
model and the film theory may be applied to analyze these 
scale formation phenomena in the RO system. However, 
it is difficult to obtain all the model parameters required 
for these models using the experimental data. In addi-
tion, these parameters are dependent on the operating 
conditions such as CaSO4 and humic acid concentrations, 
leading to a failure of reasonable prediction of new set 
of experimental data. Thus, a model based on GP was 
considered and applied to analyze the experimental 
results in Fig. 2. 

4.2. Development of GP model 

A GP model was designed to predict RO flux as a 
function of input parameters including time, VCF, applied 
pressure, stirring speed, and humic acid concentration. 
To apply GP algorithm for model development, some of 
the data set in Table 2 (Run-1, Run-3, Run-5, Run-7, Run-
8, Run-10, Run-11, Run-12, Run-15, Run-17, and Run-18) 
were used for training the model. Then, the model was 
validated by other data set (Run-2, Run-6, Run-9, and 
Run-14). The final model code was generated in JAVA 
(see Appendix). This two-step validation seems to be 

Fig. 2. Experimental results for RO test runs under various 
conditions.

appropriate to develop a predictive model because it can 
demonstrate how well the evolved model works on data 
it did not train on. 

Fig. 3 shows how the fitness changed with the genera-
tion of model programs. The best program should have 
smallest fitness. The fitness did not decrease significantly 
over the run number of 10000, suggesting that no more 
runs are required to have better accuracy. 
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Fig. 4 and Fig. 5 compare the experimental results with 
model calculations. The calculations by the present model 
are in good agreement with the experimental data. The 

Fig. 3. Fitness test results for programs generated by GP 
algorithm.

Fig. 4. Comparison of experimental data for model prediction: 
training of model.

Fig. 5. Comparison of experimental data for model prediction: 
model validation.
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R2 values for model training and validation were 0.951 
and 0.954, respectively. 

4.3. Application of GP model 

In Fig. 6, the model calculations were compared with 
experimental data for Run-4, Run-13, and Run-16. The 
model predicts the effect of scale formation on flux well 
except for Run-13, in which the model slightly under-
predicts the flux. Nevertheless, the model captures the 
overall trend of flux decline. The R2 value for model ap-
plication was 0.832. 

There are possible reasons for deviation of model 
from experimental data in Run-13. First, there were some 
experimental errors, leading to high initial flux than ex-
pected. Based on the calculation of membrane resistance, 
the initial flux for Run-13 should be less than 40 L/m2-h. 
Second, the model itself has limited ability to predict 
the experimental data for this condition (low pressure, 
low concentration of DOM) because the data for model 
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Table 2
Impact of input parameters

  Frequency Average impact Maximum impact

Humic acid concentration 1 0.11172 0.1645
Applied pressure 1 0.39201 0.8052
Stirring speed 0.53 0.04118 0.0670
Time 0.23 0.00046 0.00075
VCF 1 0.48631 0.49694

Fig. 6. Comparison of experimental data for model prediction: 
model application. 

training was insufficient. It is likely that the selection of 
experimental set for model tanning is also important. 

4.4. Impact of input parameters 

Using the model, the relative importance of each in-
put parameter can be analyzed. Table 2 lists the impact 
of input parameters on permeate flux. The frequency 
shows how many times each input appears in a way that 

contributes to the fitness of the programs. The impact 
shows the relative importance of the input parameter. A 
value of 1.0 represents the largest impact value possible. 
It should be noted that the impact is defined as the rela-
tive importance of input parameters on permeate flux 
rather than the scale formation rate. Thus, the impact of 
an input parameter indicates how much it affects not only 
the absolute value of flux but also the changes in flux (or 
membrane fouling). 

It is evident from Table 2 that VCF and applied pres-
sure have higher impact than other input parameters 
(total impact of these two parameters is 0.88). These 
results qualitatively match with the mechanistic model 
shown in Eqs. (1), (4), and (5), where flux is proportional 
to the applied flux and inversely proportional to cb and 
cw (which are related to VCF). In addition, the impact of 
humic acid concentration is substantial compared with 
stirring speed and time. Humic acid is likely to interfere 
with the nucleation and growth of crystals, thereby af-
fecting the kinetic properties [8]. 

5. Conclusions

In this work, a GP model was developed to explore the 
effect of CaSO4 scale formation on RO membrane process 
under complex conditions. Experimental results using a 
batch RO stirred cell indicated that the rates of flux decline 
were dependent on the applied pressure, stirring speed, 
and humic acid concentration. Nevertheless, it appears 
that the effect of these input parameters on flux is hard 
to be interpreted by simple mechanistic models. A GP 
algorithm was applied to develop a model for RO foul-
ing due to scale formation. After training and validation, 
the model predicts the experimental data well. In the GP 
model, VCF, applied pressure, and humic acid concen-
tration have higher impact than other input parameters.
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Appendix

f[0]*=f[0];
f[0]+=f[0];
f[0]+=f[0];
tmp=f[1]; f[1]=f[0]; f[0]=tmp;
f[0]-=f[1];
tmp=f[3]; f[3]=f[0]; f[0]=tmp;
tmp=f[0]; f[0]=f[0]; f[0]=tmp;
f[1]*=f[0];
f[0]=Math.sqrt(f[0]);
f[0]*=f[0];
if (!cflag) f[0] = f[2];
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[3])) ? true 
: (f[0] < f[3]);
f[0]+=f[2];
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[0])) ? true 
: (f[0] < f[0]);
f[0]/=-1.238061666488648f;
f[0]-=f[2];
f[0]/=f[0];
f[0]/=f[1];
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[1])) ? true 
: (f[0] < f[1]);
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[2])) ? true 
: (f[0] < f[2]);
f[0]*=f[0];
f[0]/=f[2];
f[0]=Math.cos(f[0]);
f[0]=-f[0];
f[0]-=-1.364008665084839f;
if (cflag) f[0] = f[1];
f[3]+=f[0];
f[1]*=f[0];
f[0]+=-0.6102392673492432f;
tmp=f[3]; f[3]=f[0]; f[0]=tmp;
tmp=f[0]; f[0]=f[0]; f[0]=tmp;
f[0]-=-1.364777803421021f;

Model program generated by GP (Java code)

Definitions of function and input variables

Function : flux (L/m2-h)
v[0] : humic acid concentration (mg/L)
v[1] : applied ressure (bar)
v[2] : stirring speed (rpm)
v[3] : time (min)
v[4] : concentration factor (–) 

float Function(float [] v)
{
double [] f=new double[8];
double tmp = 0;
boolean cflag = false;

f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0;

f[0]+=f[0];
f[0]=Math.sqrt(f[0]);
f[0]+=f[1];
if (cflag) f[0] = f[3];
f[0]+=f[0];
f[0]+=f[3];
f[0]+=-0.8057427406311035f;
f[0]/=v[1];
tmp=f[2]; f[2]=f[0]; f[0]=tmp;
if (!cflag) f[0] = f[2];
f[0]*=f[2];
tmp=f[2]; f[2]=f[0]; f[0]=tmp;
f[2]-=f[0];
tmp=f[3]; f[3]=f[0]; f[0]=tmp;
f[0]+=1.366016626358032f;
f[0]*=Math.pow(2,trunc(f[1]));
f[0]*=f[3];
f[0]+=f[0];
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f[0]/=v[4];
f[0]+=1.366016626358032f;
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[2])) ? true 
: (f[0] < f[2]);
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[3])) ? true 
: (f[0] < f[3]);
f[0]=Math.sin(f[0]);
f[3]*=f[0];
f[0]=Math.abs(f[0]);
f[0]-=-1.063283443450928f;
f[0]/=v[4];
f[0]*=v[0];
tmp=f[3]; f[3]=f[0]; f[0]=tmp;
f[2]/=f[0];
f[0]+=1.366016626358032f;
tmp=f[3]; f[3]=f[0]; f[0]=tmp;
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[3])) ? true 
: (f[0] < f[3]);
f[1]-=f[0];
f[0]=-f[0];
f[0]-=0.1756083965301514f;
f[0]*=-0.494312047958374f;
if (cflag) f[0] = f[2];
tmp=f[2]; f[2]=f[0]; f[0]=tmp;
f[0]+=f[2];
f[0]/=f[0];
f[0]*=Math.pow(2,trunc(f[1]));
f[0]*=-1.063283443450928f;
if (cflag) f[0] = f[2];
f[0]-=f[1];
if (cflag) f[0] = f[2];
f[0]-=-1.549970149993897f;
f[0]+=f[3];
f[0]/=v[4];
f[1]/=f[0];
if (!cflag) f[0] = f[0];
f[0]=Math.sin(f[0]);
f[0]*=Math.pow(2,trunc(f[1]));

f[0]*=1.086833715438843f;
f[0]-=f[1];
f[1]-=f[0];
f[0]-=-1.549970149993897f;
f[0]-=-1.364777803421021f;
f[0]/=v[4];
f[1]/=f[0];
cflag=(Double.isNaN(f[0]) || Double.isNaN(f[3])) ? true 
: (f[0] < f[3]);
f[0]=Math.sin(f[0]);
f[0]=Math.abs(f[0]);
f[0]*=f[0];
tmp=f[1]; f[1]=f[0]; f[0]=tmp;
f[0]=Math.abs(f[0]);
f[1]*=f[0];
f[0]-=f[0];
f[0]=Math.cos(f[0]);
f[0]/=f[0];
f[0]/=f[3];
f[0]/=f[3];
f[0]+=f[1];
f[0]-=-1.549970149993897f;
f[0]+=0.7790718078613281f;
f[0]/=v[4];
if (cflag) f[0] = f[2];
if (cflag) f[0] = f[2];
f[1]+=f[0];
f[0]/=f[3];
f[0]+=1.366016626358032f;
f[0]*=v[1];

if (Double.isInfinite(f[0]) || Double.isNaN(f[0]))
{
f[0]=0;
};
return (float) f[0];
}




